VERKEHRSUNTERSUCHUNG ZUR NEUBAUPLANUNG DER B 215_N (ORTSUMGEHUNG LEESE) IN DER SG MITTELWESER

AUFTRAGGEBER: SG MITTELWESER

AM MARKT 4, 31592 STOLZENAU

AUFTRAGNEHMER: PGT UMWELT UND VERKEHR GMBH

SEDANSTRASSE 48, 30161 HANNOVER

TELEFON: 0511/38 39 40 TELEFAX: 0511/33 22 82

EMAIL: POST@PGT-HANNOVER.DE

BEARBEITUNG: DIPL.-ING. R. LOSERT

DIPL.-GEOGR. H. WINDMÜLLER

K. GRÜTZ, B. ENG.

GRAFIK: DIPL.-GEOGR. R. NÖLLGEN

G. HERNER

TYPOSCRIPT: DIPL.-SozWiss. H.RITZER-BRUNS

Hannover, 18. November 2013 P2444_T_130610_Mittelweser_B 215.docx

INHALTSVERZEICHNIS:

		Seite
1.	Ausgangslage	1
2.	Art und Umfang der Erhebungen	3
2.1	Methodik	3
2.2	Ergebnisse der Verkehrszählung	6
2.3	Ergebnisse der Verkehrsbefragung	18
2.4	ÖPNV-Angebot	24
2.5	Pendlerbeziehungen	24
3.	Prognoseannahmen	26
3.1	Überregionale Prognosen	26
3.2	Allgemeine Verkehrszunahme	27
3.3	Verkehrsentwicklung infolge der Planung von Gewerbegebieten	28
3.3.1	Interkommunales Gewerbegebiet Nienburg-Süd/Leeseringen	28
3.3.2	Gewerbegebiet B-Plan Nr. 101 "Südring" Nienburg (Weser)	31
3.3.3	Verkehrsaufkommen aller gewerblichen Neuplanungen	31
3.4	Entwicklungsflächen in der Stadt Nienburg (Weser)	33
4.	Ergebnisse der Verkehrsumlegungsberechnungen	34
4.1	Prognose-Nullfall	35
4.2	Prognose-Nullfall – Struktur	36
4.3	Bezugsfall	38
4.4	Straßennetzvarianten	39
4.4.1	Erschließung Gewerbegebietes Nienburg-Süd / Leeseringen	39
4.4.2	Variante 1: B 215 _n	40
4.4.3	Variante 2.1: Ostumgehung von Leese	43
4.4.4	Variante 2.2: Westumgehung von Leese	46
5.	Leistungsfähigkeitsberechnung der Knotenpunkte	48
5.1	Maßgebende stündliche Verkehrsbelastung	
5.2	Berechnungsverfahren	48
6.	Verkehrliche Kennwerte für die Lärmberechnung	57
7	Zusammenfassung	63

ABBILDUNGSVERZEICHNIS:

Abb. 1.1:	Straßennetz (Bestand)	2
Abb. 2.1:	Zählstellenplan	3
Abb. 2.2:	Lage der Seitenradargeräte	4
Abb. 2.3:	Tagesganglinie Q 1 – B 215/ B 441 (Westen)	7
Abb. 2.4:	Tagesganglinie Q 2 – B 215 (Süd)	8
Abb. 2.5:	Tagesganglinie Q 3 – B 482	
Abb. 2.6:	Tagesganglinie Q 4 – B 441	10
Abb. 2.7:	Tagesganglinie Q 5 – B 215 (Norden)	11
Abb. 2.8:	Verkehrsmengen Knotenpunkt Loccumer Straße (B 441) / An der Riede /	
	Landesberger Straße (B 215) / Stolzenauer Straße (B 215 / B 441)	13
Abb. 2.9:	Verkehrsmengen Knotenpunkt B 441 / Pöhler Damm / Loccumer Straße	(B 441)
	/ Weißer Stein (B 482)	14
Abb. 2.10:	Lage der Zählstellen der Straßenverkehrszählung	16
Abb. 2.11:	Befragungszählstelle B 1: Stolzenauer Straße (B 215/ B 441)	
Abb. 2.12:	Befragungszählstelle B 2: Landesberger Straße (B 215)	20
Abb. 2.13:	Befragungszählstelle B 3: Weißer Stein (B 482)	21
Abb. 2.14:	Befragungszählstelle B 4: Leeser Straße (B 441)	22
Abb. 2.15:	Durchgangsverkehr bezogen auf Leese (Kfz/24 h)	
Abb. 3.1:	Erwerbstätigen- und Bevölkerungsentwicklung	
Abb. 3.2:	Entwicklungskonzept (Variante A) für das Logistik- und Industriezentrum	
	Nienburg-Süd / Leeseringen /9/	
Abb. 3.3:	B-Plan Nr. 101 "Südring" der Stadt Nienburg (Weser)	31
Abb. 3.4:	Verkehrsaufkommen der gewerblichen Entwicklungsflächen	
Abb. 3.5:	Tageszeitliche Verteilung des Gewerbeverkehrs	
Abb. 4.1:	Anbindung des Gewerbegebietes Nienburg-Süd / Leeseringen	
Abb. 4.2:	Verteilung der Verkehrsströme des Gewerbegebietes Nienburg-Süd /	
	Leeseringen	40
Abb. 4.3:	Variante 1 – Übersicht Verlegung B 215 _n	41
Abb. 4.4:	Varianten 2.1 / 2.2 – Übersicht Ortumgehung Leese	45
Abb. 5.1:	Bezeichnung der Knotenpunkte	50
Abb. 5.2:	Qualität des Verkehrsablaufes B 215 _n Knotenpunkte K 1 bis K 5	52
Abb. 5.3:	Qualität des Verkehrsablaufes Ostumgehung Leese Knotenpunkte K 6 bi	s K 8
		54
Abb. 5.4:	Qualität des Verkehrsablaufes Westumgehung Leese Knotenpunkte K 9	bis
	K 11	56
Abb. 6.1:	Tonnageklassen der Lkw (Stand 2012) (Quelle: /15/)	
Abb. 6.2:	Anteil der Fahrzeugklassen mit einer Gesamttonnage von 2,8 t bis 3,5 t (
	2012) (Quelle: /15/)	
Abb. 6.3:	Abschnittsnummerierung für die verkehrlichen Kennwerte	
Abb. 6.4:	Abschnittsnummerierung für die verkehrlichen Kennwerte Bezugsfall	62

TABELLENVERZEICHNIS:

Tab. 2.1:	Lage der Knotenstromzählstellen	5
Tab. 2.2:	Lage der Seitenradargeräte	5
Tab. 2.3:	Lage der Befragungszählstellen	6
Tab. 2.4:	Verkehrsmengen Q 1 – B 215/ B 441 (Westen)	7
Tab. 2.5	Verkehrsmengen Q 2 – B 215 (Süd)	
Tab. 2.6:	Verkehrsmengen Q 3 – B 482	
Tab. 2.7:	Verkehrsmengen Q 4 – B 441	
Tab. 2.8:	Verkehrsmengen Q 5 – B 215 (Norden)	
Tab. 2.9:	Verkehrsmengenentwicklung Angaben DTV _W [Kfz/24 h]	
Tab. 2.10:	Einpendler (sozialversicherungspflichtig Beschäftigte) (Quelle: /13/)	
Tab. 2.11:	Auspendler (sozialversicherungspflichtig Beschäftigte) (Quelle: /13/)	
Tab. 3.1:	Veränderung der Pkw-Jahresfahrleistung	
Tab. 3.2:	Flächenaufteilung Logistik- und Industriezentrum Nienburg-Süd / Leesering	gen
Tab. 3.3:	Anzahl der sozialversicherungspflichtig Beschäftigten (Quelle: /13/)	29 32
Tab. 4.1:	Übersicht der Planfälle	
Tab. 4.2:	P 0-Fall – Veränderung der Querschnittsbelastung gegenüber der Analyse Gesamtverkehr [DTV _W in Kfz/24 h]	- 35
Tab. 4.3:	P0-Fall – Veränderung der Querschnittsbelastung gegenüber der Analyse –	-
	Schwerverkehr [Lkw/24 h]	36
Tab. 4.4:	P 0-Fall-Struktur – Veränderung der Querschnittsbelastung gegenüber der	
	Analyse – Gesamtverkehr [DTV _W in Kfz/24 h]	37
Tab. 4.5:	P0-Fall-Struktur – Veränderung der Querschnittsbelastung gegenüber der	
	Analyse – Schwerverkehr [Lkw/24 h]	37
Tab. 4.6:	Bezugsfall – Veränderung der Querschnittsbelastung gegenüber dem P 0-F	Fall –
	Gesamtverkehr [DTV _W in Kfz/24 h]	
Tab. 4.7:	Bezugsfall – Veränderung der Querschnittsbelastung gegenüber dem P 0-F	-all
	Schwerverkehr [Lkw/24 h]	38
Tab. 4.8:	Variante 1: Veränderung der Querschnittsbelastungen gegenüber der Analy	
	und dem Bezugsfall – Gesamtverkehr [DTV _W in Kfz/24 h]	42
Tab. 4.9:	Variante 1: Veränderung der Querschnittsbelastungen gegenüber der Analy	/se
	und dem Bezugsfall Schwerverkehr [Lkw/24 h]	42
Tab. 4.10:	Variante 2.1: Veränderung der Querschnittsbelastungen gegenüber der Ana	alyse
	und dem Bezugsfall – Gesamtverkehr [DTV _W in Kfz/24 h]	
Tab. 4.11:	Variante 2.1: Veränderung der Querschnittsbelastungen gegenüber der Ana	alyse
	und dem Bezugsfall Schwerverkehr [Lkw/24 h]	44
Tab. 4.12:	Variante 2.2.: Veränderung der Querschnittsbelastungen gegenüber der	
	Analyse und dem Bezugsfall Gesamtverkehr [DTV _W in Kfz/24 h]	46
Tab. 4.13:	Variante 2.2: Veränderung der Querschnittsbelastungen gegenüber der Ana	alyse
	und dem Bezugsfall Schwerverkehr [Lkw/24 h]	47
Tab. 5.1:	Auswertung der Straßenverkehrszählung 2010	48
Tab. 5.2:	Qualitätsstufen des Verkehrsablaufs (Quelle: HBS 2001)	49
Tab. 6.1:	Maßgebende Verkehrsstärke M und maßgebende Lkw-Anteile p entspreche	
	RLS-90 /14/ – Prognose 2025	59
Tab. 6.2:	Maßgebende Verkehrsstärke M und maßgebende Lkw-Anteile p entspreche	end
	RLS-90 /14/ – Prognose 2025	61

LITERATURVERZEICHNIS:

1	Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Handbuch für die Bemessung von Straßenverkehrsanlagen HBS – Köln, 2001/2005
2	Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Stadtstraßen (RASt 06), Köln 2006
3	Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Landstraßen (RAL), Köln 2012
4	Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für Lichtsignalanlagen (RiLSA), Köln 2010
5	BPS GmbH: Programm KREISEL, Version 8, Karlsruhe 2013
6	BPS GmbH: Programm KNOSIMO, Version 5, Karlsruhe 2004
7	BPS GmbH: Signalprogramm AMPEL, Version 5, Karlsruhe 2010
8	SHELL Deutschland Oil GmbH: Shell Pkw-Szenarien bis 2030: Fakts, Trends und Handlungsoptionen für eine nachhaltige Automobilität - 25. Ausgabe, Hamburg 2009
9	grbv Ingenieurbüro für Bauwesen, Meyer + Borcherding: Stadt Nienburg (Weser) Samtgemeinde Landesbergen, Logistik- und Industriezentrum Nienburg-Süd/Leeseringen, Entwicklungskonzept, Hannover – Nienburg – Bielefeld, November 2008
10	Planco Consulting GmbH: Potenzialstudie für eine KV-Anlage im Logistik- und Industriezentrum Nienburg-Süd / Leeseringen, Essen, April 2010
11	Ingenieurgemeinschaft DrIng. Schubert: Stadt Nienburg, Verkehrsentwicklungsplan 2005, Aktualisierung der Straßennetzgestaltung und der Verkehrsprognose, Hannover, Februar 2005
12	Ingenieurgemeinschaft DrIng. Schubert: Interkommunales Logistik- und Industriezentrum Nienburg-Süd/ Leeseringen, Verkehrsplanerische Stellungnahme über die verkehrlichen Entwicklungen im Zuge der B 215, Hannover, Februar 2010
13	Statistik der Bundesagentur für Arbeit: Sozialversicherungspflichtig Beschäftigte am Wohn- und Arbeitsort nach Gemeinden mit Angaben zu den Auspendlern (Niedersachsen), Stand: 30.06.2012
14	Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinie für den Lärmschutz an Straßen (RLS-90), Köln 1990
15	Kraftfahrtbundesamt : Statistische Mitteilungen, Flensburg, 01. Januar 2012
16	SSP Consult GmbH: Verkehrswirtschaftliche Untersuchung für die Bedarfsplanmaßnahme
	E 233 (B 402/B 213/B 72) zwischen der BAB A 31 westlich von Meppen und der BAB A 1 östlich von Emstek – Projekt NI.0042/2009, Hannover 2010
17	Planungsgemeinschaft DrIng. W. Theine (PGT): Hafenanbindung A 27 – Verkehrliche Grundlagen der Varianten im Untersuchungsraum Bremerhaven, Hannover 2007
18	Bosserhoff: Ver_Bau – Programm zur Abschätzung der Verkehrsaufkommens durch Vorhaben der Bauleitplanung, Gustavsburg, 2012
19	IngGemeinschaft Schubert: Stadt Nienburg – Verkehrsentwicklungsplan 2005, Aktualisierung der Straßennetzgestaltung und der Verkehrsprognose, Hannover 2006

1. Ausgangslage

Die Samtgemeinde Mittelweser und die Stadt Nienburg (Weser) planen ein Logistik- und Industriezentrum in der Gemeinde Estorf. Die Lage an der B 215, die eine überregionale Verbindungsfunktion übernimmt, ist unter verkehrlichen Gesichtspunkten als attraktiver Standort zu bezeichnen.

Im Bedarfsplan der Bundesfernstraßen sind im Zuge der B 215 die Ortsumgehung Landesbergen im weiteren Bedarf und die Ortsumgehung Leese im Zuge der B 215 / B 441 im weiteren Bedarf mit besonderen naturschutzfachlichem Planungsauftrag enthalten. Vor diesem Hintergrund soll die vorliegende Untersuchung die verkehrlichen Wirkungen

- der Verlegung der B 215_n im Raum Leeseringen bis Landesbergen sowie
- einer West- bzw. Ostumgehung von Leese bestimmen.

Der großräumige **Untersuchungsraum** wird im Norden durch die A 1 bzw. A 27, im Osten durch die A 7, im Süden durch die A 2 und im Westen durch die B 239 / B 51 begrenzt.

Der engere **Planungsraum**, in dem die verkehrlichen Wirkungen einer Straßenneubauplanung quantifiziert werden, umfasst die B 215 von Nienburg (Weser) im Norden bis Leese im Süden.

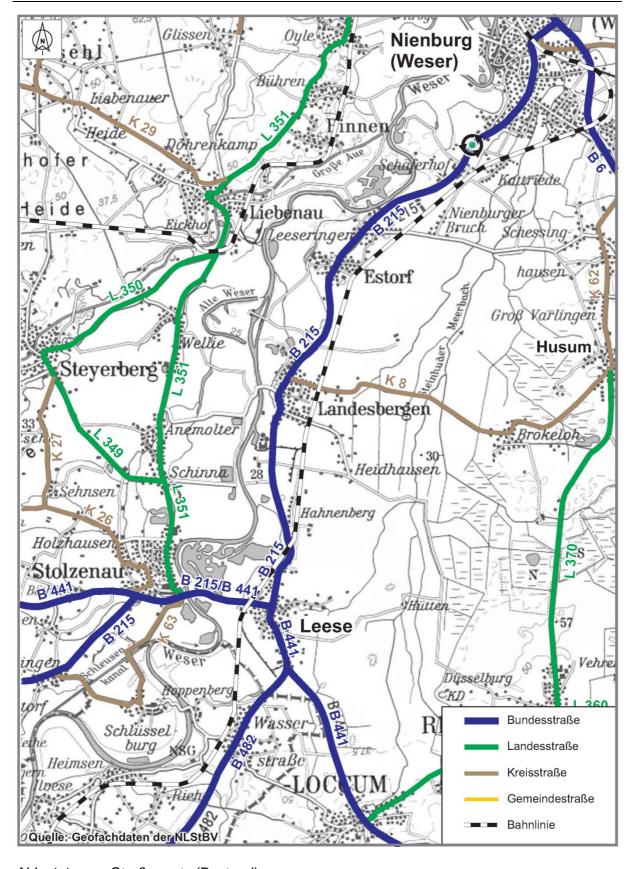


Abb. 1.1: Straßennetz (Bestand)

2. Art und Umfang der Erhebungen

2.1 Methodik

Umfang der Zählung

Grundlage für die Erkennung von Mängeln und die Entwicklung von Konzepten ist die genaue Kenntnis der heute vorhandenen Verkehrsströme und -beziehungen. Aufgrund der vorliegenden Verkehrserhebungen im Zuge der B 215 der vorangegangenen Jahre wurde eine Aktualisierung der Querschnittsmengen mittels automatischer, mehrtägiger Verkehrserhebungen als ausreichend angesehen.

Für die Ermittlung der Verkehrsmengen und Verkehrsströme von Leese war demgegenüber ein differenzierteres Untersuchungsdesign zu wählen. Daher wurde eine Befragung der Verkehrsteilnehmer an vier Zählstellen durchgeführt. Gleichzeitig erfolgten zur Erfassung der Verkehrsmengen sowohl Querschnittszählungen mit Seitenradar-Geräten als auch manuelle Knotenstromzählungen. Dabei wurden die Verkehrsströme an 2 Knotenpunkten erfasst und an 5 Querschnitten eine automatische Mengenerfassung über 7 Tage durchgeführt.

Die Lage der Zählstellen sind den Abbildungen 2.1 und 2.2 zu entnehmen.

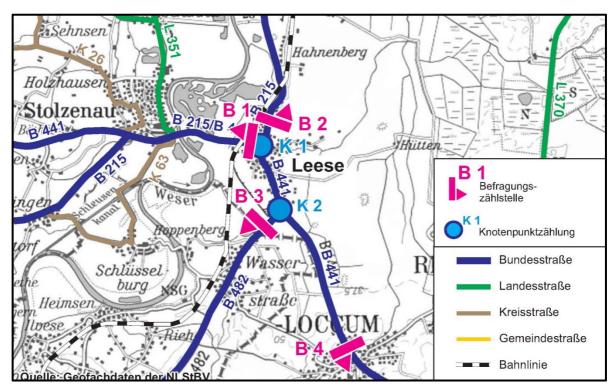


Abb. 2.1: Zählstellenplan

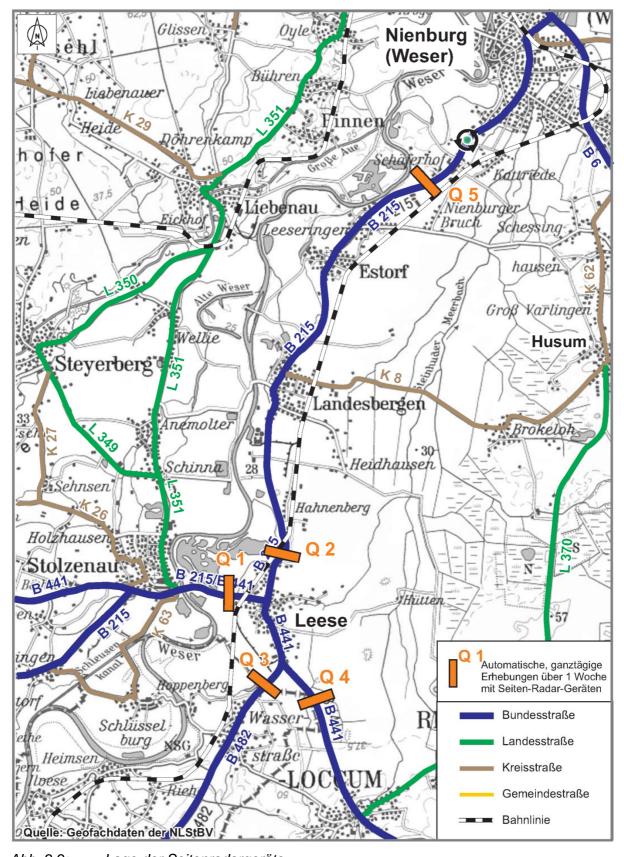


Abb. 2.2: Lage der Seitenradargeräte

Manuelle Zählungen

Bei manuellen Verkehrserhebungen werden die Verkehrsströme mit Hilfe von Strichlisten in Zeitintervallen von 15 Minuten richtungsbezogen erfasst. Es wurde nach folgenden Fahrzeugarten unterschieden:

KR	Motorrad, Motorroller, Moped
PKW	Personenkraftwagen, Kombinationskraftwagen (Pkw mit Anhänger)
LFZ	Lieferfahrzeuge < 3,5 t (mit Differenzierung Lfz 2,8 bis 3,5 t)
BUS	(Linien- und Reise-)Omnibus
LKW	Lastkraftwagen > 3,5 bis 7,5 t
	Lastkraftwagen > 7,5 t, Zugmaschinen, Sonderfahrzeuge
LZ	Lastzug, Lastkraftwagen mit Hänger/Auflieger
LW	Landwirtschaftliche Nutzfahrzeuge

Am Dienstag, den 16. April 2013, wurden die Verkehrsmengen in der Zeit von 6.00 bis 10.00 und von 15.00 bis 19.00 Uhr an zwei Knotenpunkten erfasst. Während des achtstündigen Zählzeitraumes werden ca. 50 bis 60 % des werktäglichen Verkehrs abgewickelt.

K 1	Loccumer Straße (B 441) / An der Riede / Landesberger Straße (B 215) /
	Stolzenauer Straße (B 215 / B 441)
K 2	B 441 / Pöhler Damm / Loccumer Straße (B 441) / B 482

Tab. 2.1: Lage der Knotenstromzählstellen

Seitenradar-Geräte

Zur Ermittlung des Wochenganges wurden automatische Erhebungen an fünf Querschnitten mittels Seitenradar-Geräten im Zeitraum vom 15. April bis 21. April 2013 ganztägig durchgeführt.

Q 1	Stolzenauer Straße (B 215 / B 441)
Q 2	Landesberger Straße (B 215)
Q 3	B 482
Q 4	Loccumer Straße (B 441)
Q 5	Berliner Ring (B 215)

Tab. 2.2: Lage der Seitenradargeräte

Verkehrsbefragung

Ergänzt wurden die Zählungen durch Verkehrsbefragungen in einer Fahrtrichtung am Dienstag, den 16. April 2013, an insgesamt 4 Querschnitten, die im selben Erhebungszeitraum (6.00 bis 10.00 und 15.00 bis 19.00 Uhr) erfolgten.

B 1	Stolzenauer Straße (B 215 / B 441) - Richtung Stolzenau
B 2	Landesberger Straße (B 215) - Richtung Landesbergen
В 3	Weißer Stein (B 482) - Richtung Wasserstraße
B 4	Leeser Straße (B 441) - Richtung Loccum

Tab. 2.3: Lage der Befragungszählstellen

Hochrechnung der Zählergebnisse

Die Verkehrsmengen der bei der manuellen Zählung nicht erhobenen Zeiträume werden durch Berechnungsverfahren ermittelt. Zur Berechnung der zeitlichen Verteilung und zur Ermittlung der Verkehrsmengen eines Tages (Kfz/ 24 h) werden die analysierten Verkehrsbelastungen richtungsgetrennt unterschiedlichen Tagesganglinien zugeordnet, die die Besonderheiten im Tagesverlauf erkennen lassen. Mit Hilfe eines EDV-Programmes findet für alle analysierten Fahrtrichtungen ein Vergleich der gezählten Belastungen mit den standardisierten Ganglinientypen statt.

Für den Schwerverkehr liegen separate Ganglinien vor, die das erhöhte Schwerverkehrsaufkommen während des Mittagszeitbereiches und ggf. der Nachtstunden berücksichtigen.
Ausgewählt wird für jede Richtung der Ganglinientyp, der innerhalb des Zählzeitraumes die
geringsten Abweichungen von den gezählten Belastungswerten aufweist. Mit Kenntnis der
Verkehrsmengenverteilung von 0.00 bis 24.00 Uhr des betreffenden Ganglinientyps können
die nicht gezählten Stundenwerte ergänzt werden. Da sich die zeitliche Verteilung des
Schwerverkehrs über den Tag von der des Pkw-Verkehrs unterscheidet, werden die Fahrzeugarten getrennt hochgerechnet.

2.2 Ergebnisse der Verkehrszählung

Neben den Knotenstromzählungen, die Aufschlüsse über die Querschnittsbelastung und über die Höhe der Abbiegeströme geben, wurden mehrtägige Verkehrserhebungen mit Seitenradar-Geräten durchgeführt. Diese dienen zur Ermittlung der tageszeitlichen Verteilung des Verkehrs und des Wochengangs. Die Verkehrserhebungen mittels Seitenradar-Geräten wurden im Zeitraum vom 15. April bis 21. April durchgeführt, d.h. über einen Zeitraum von 7 Tagen.

Den Tabellen 2.4 bis 2.8 sind die richtungsbezogenen Belastungen der Straßenabschnitte und die Schwerverkehrsanteile zu entnehmen. An allen analysierten Querschnitten liegt der Schwerverkehrsanteil bei über 10 %, wobei dieser im Zuge der B 482 mit rd. 25 % (vgl. Tabelle 2.6) als sehr hoch zu bezeichnen ist.

Zähltag	Datum	Richtung	Rich	Richtungsbelastung		
			Kfz/24 h	Lkw/24 h	%	Kfz/24 h
Montag,	15.04.2013	Westen	3.923	411	10,5%	7.822
		Osten	3.899	409	10,5%	
Dienstag,	16.04.2013	Westen	3.971	406	10,2%	7.983
		Osten	4.012	389	9,7%	
Mittwoch,	17.04.2013	Westen	3.889	394	10,1%	7.643
		Osten	3.754	402	10,7%	
Donnerstag	18.04.2013	Westen	4.054	419	10,3%	8.050
		Osten	3.996	414	10,4%	
Freitag	19.04.2013	Westen	4.281	427	10,0%	8.329
		Osten	4.048	438	10,8%	
Samstag,	20.04.2013	Westen	3.183	149	4,7%	6.238
		Osten	3.055	168	5,5%	
Sonntag,	21.04.2013	Westen	2.655	21	0,8%	5.408
		Osten	2.753	27	1,0%	

Tab. 2.4: Verkehrsmengen Q 1 – B 215/ B 441 (Westen)

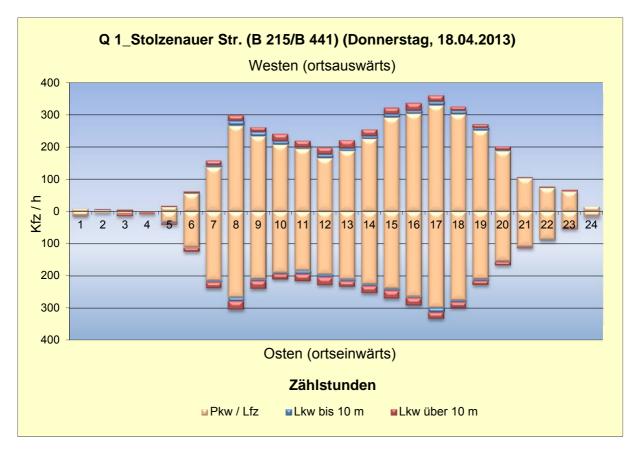


Abb. 2.3: Tagesganglinie Q 1 – B 215/ B 441 (Westen)

Zähltag	Datum	Richtung	Richtungsbelastung			Querschnitt
			Kfz/24 h	Lkw/24 h	%	Kfz/24 h
Montag,	15.04.2013	Süden	3.423	612	17,9%	6.589
		Norden	3.166	606	19,1%	
Dienstag,	16.04.2013	Süden	3.167	591	18,7%	6.456
		Norden	3.289	611	18,6%	
Mittwoch,	17.04.2013	Süden	3.233	593	18,3%	6.285
		Norden	3.052	565	18,5%	
Donnerstag	18.04.2013	Süden	3.468	628	18,1%	6.824
		Norden	3.356	624	18,6%	
Freitag	19.04.2013	Süden	3.763	641	17,0%	7.355
		Norden	3.592	606	16,9%	
Samstag,	20.04.2013	Süden	2.709	136	5,0%	5.376
		Norden	2.667	158	5,9%	
Sonntag,	21.04.2013	Süden	2.213	21	0,9%	4.379
		Norden	2.166	29	1,3%	

Tab. 2.5 Verkehrsmengen Q 2 – B 215 (Süd)

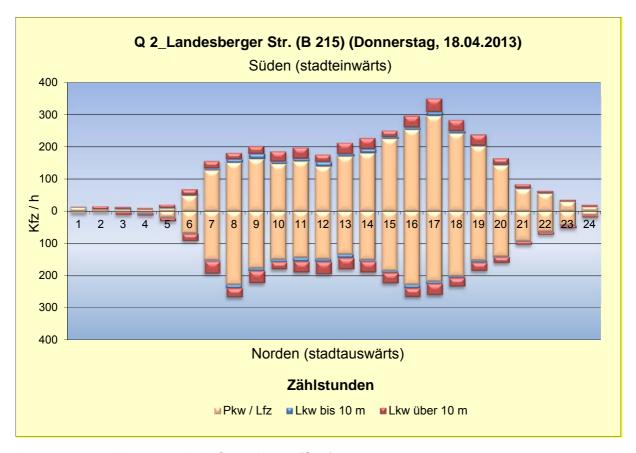


Abb. 2.4: Tagesganglinie Q 2 – B 215 (Süd)

Zähltag	Datum	Richtung	Rich	Richtungsbelastung		
			Kfz/24 h	Lkw/24 h	%	Kfz/24 h
Montag,	15.04.2013	Südwesten	1.982	521	26,3%	3.991
		Nordosten	2.009	513	25,5%	
Dienstag,	16.04.2013	Südwesten	1.932	491	25,4%	3.975
		Nordosten	2.043	527	25,8%	
Mittwoch,	17.04.2013	Südwesten	1.982	517	26,1%	3.948
		Nordosten	1.966	502	25,5%	
Donnerstag	18.04.2013	Südwesten	2.110	541	25,6%	4.219
		Nordosten	2.109	551	26,1%	
Freitag	19.04.2013	Südwesten	2.313	533	23,0%	4.703
		Nordosten	2.390	526	22,0%	
Samstag,	20.04.2013	Südwesten	1.591	86	5,4%	3.270
		Nordosten	1.679	91	5,4%	
Sonntag,	21.04.2013	Südwesten	1.486	40	2,7%	2.961
_		Nordosten	1.475	26	1,8%	

Tab. 2.6: Verkehrsmengen Q 3 – B 482

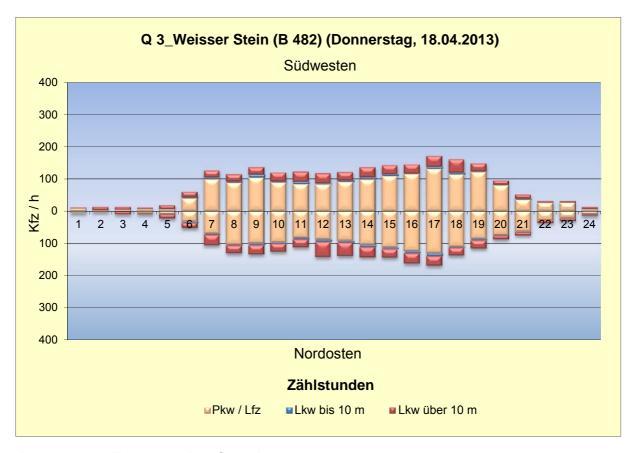


Abb. 2.5: Tagesganglinie Q 3 – B 482

Zähltag	Datum	Richtung	Rich	Richtungsbelastung		
			Kfz/24 h	Lkw/24 h	%	Kfz/24 h
Montag,	15.04.2013	Nordwesten	2.725	236	8,7%	5.398
		Südosten	2.673	229	8,6%	
Dienstag,	16.04.2013	Nordwesten	2.827	258	9,1%	5.649
		Südosten	2.822	231	8,2%	
Mittwoch,	17.04.2013	Nordwesten	2.700	251	9,3%	5.364
		Südosten	2.664	243	9,1%	
Donnerstag	18.04.2013	Nordwesten	2.779	251	9,0%	5.600
		Südosten	2.821	251	8,9%	
Freitag	19.04.2013	Nordwesten	2.828	239	8,5%	5.682
		Südosten	2.854	242	8,5%	
Samstag,	20.04.2013	Nordwesten	2.182	105	4,8%	4.291
		Südosten	2.109	102	4,8%	
Sonntag,	21.04.2013	Nordwesten	1.691	25	1,5%	3.312
		Südosten	1.621	27	1,7%	

Tab. 2.7: Verkehrsmengen Q 4 – B 441

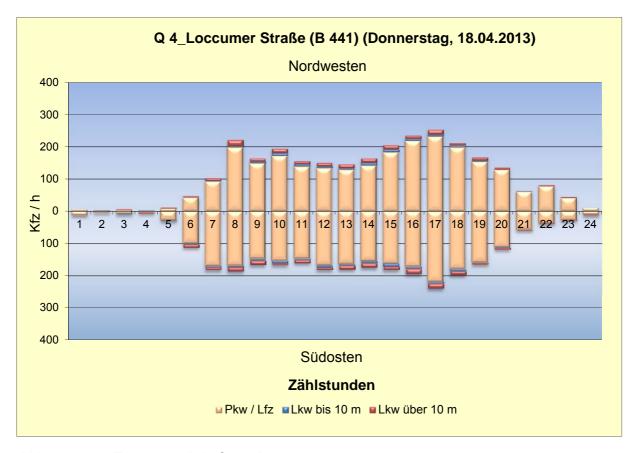


Abb. 2.6: Tagesganglinie Q 4 – B 441

Zähltag	Datum	Richtung	Rich	ntungsbelast	tung	Querschnitt
			Kfz/24 h	Lkw/24 h	%	Kfz/24 h
Montag,	15.04.2013	Südwesten	4.250	614	14,4%	8.476
		Nordosten	4.226	514	12,2%	
Dienstag,	16.04.2013	Südwesten	4.167	568	13,6%	8.373
		Nordosten	4.206	528	12,6%	
Mittwoch,	17.04.2013	Südwesten	4.181	598	14,3%	8.396
		Nordosten	4.215	540	12,8%	
Donnerstag	18.04.2013	Südwesten	4.461	616	13,8%	8.908
		Nordosten	4.447	552	12,4%	
Freitag	19.04.2013	Südwesten	4.706	627	13,3%	9.296
		Nordosten	4.590	567	12,4%	
Samstag,	20.04.2013	Südwesten	3.060	105	3,4%	6.290
		Nordosten	3.230	93	2,9%	
Sonntag,	21.04.2013	Südwesten	2.419	42	1,7%	4.905
		Nordosten	2.486	33	1,3%	

Tab. 2.8: Verkehrsmengen Q 5 – B 215 (Norden)

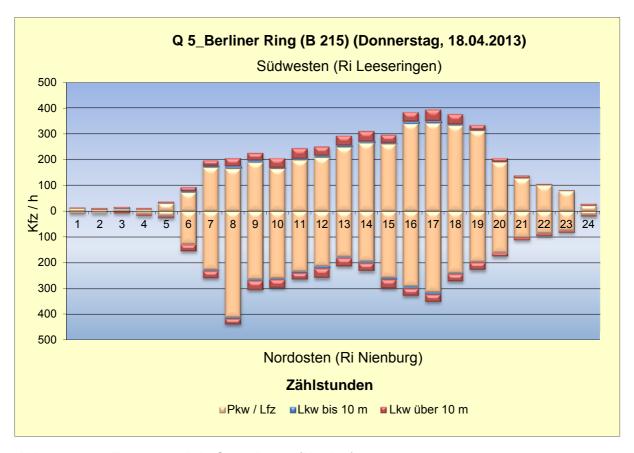


Abb. 2.7: Tagesganglinie Q 5 – B 215 (Norden)

Knotenpunkt Loccumer Straße (B 441) / An der Riede / Landesberger Straße (B 215) / Stolzenauer Straße (B 215 / B 441)

Der Knotenpunkt liegt in der Ortsmitte von Leese.

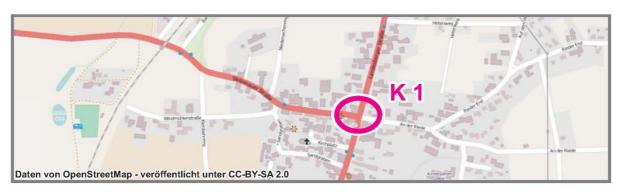
Die stärksten Abbiegebeziehungen treten mit rund 3.000 Kfz/24 h je Richtung in der Süd-West-Beziehung auf.

In der Nord-Süd-Richtung wurden rund 2.400 Kfz/24 h je Richtung analysiert.

Die Nord-West-Beziehung wird von rund 1.000 Kfz/24 h je Richtung befahren.

Die Verkehrsbeziehungen in bzw. aus der Straße " An der Riede" sind von untergeordneter Bedeutung.

Im Zuge der Bundesstraßen treten die stärksten Schwerverkehrsströme mit 300 bis 450 SV/24 h in Süd-West- und in Nord-Süd-Richtung auf.


Knotenpunkt B 441 / Pöhler Damm / Loccumer Straße (B 441) / Weißer Stein (B 482)

An diesem Knotenpunkt überwiegen die Verkehrsströme im Zuge der B 441 mit 2.750 Kfz/24 h und Richtung.

Die Abbiegebeziehungen von der B 441 (Nord) zur B 482 wurden mit knapp 2.000 Kfz/24 h und Richtung analysiert.

Die Eckbeziehung von der B 482 zur B 441 (Süd) wird lediglich von rund 100 Kfz/24 h und Richtung befahren.

Sehr hohe Abbiegeströme im Schwerverkehr wurde mit rd. 500 SV/24 h auf der Relation B 441 (Nord) / B 482 analysiert. Aber auch im Zuge der B 441 fahren je Richtung ca. 250 SV/24 h.

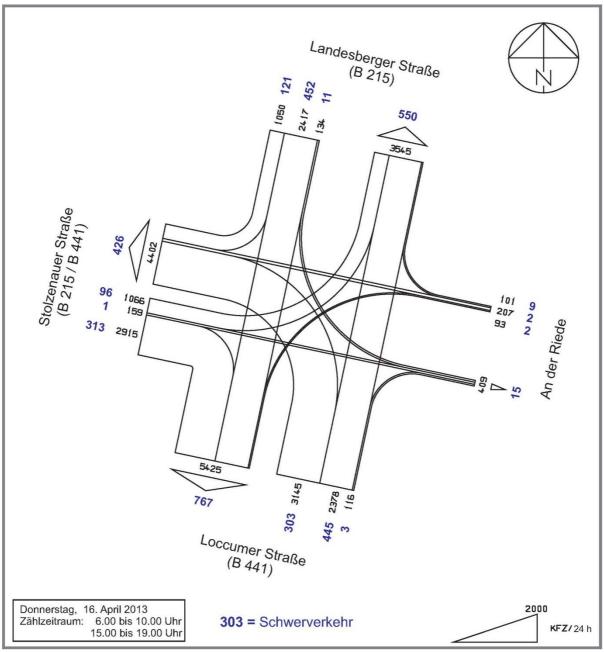


Abb. 2.8: Verkehrsmengen Knotenpunkt Loccumer Straße (B 441) / An der Riede / Landesberger Straße (B 215) / Stolzenauer Straße (B 215 / B 441)

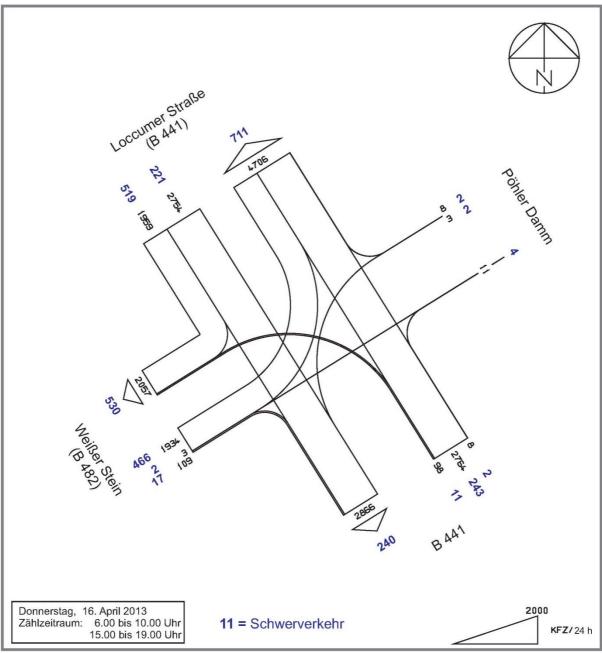


Abb. 2.9: Verkehrsmengen Knotenpunkt B 441 / Pöhler Damm / Loccumer Straße (B 441) / Weißer Stein (B 482)

Kontinuierliche Straßenverkehrszählung (SVZ) des Bundes

Von der Straßenbauverwaltung werden im Abstand von fünf Jahren Querschnittsmengen an ausgewählten Zählpunkten erhoben. Diese Erhebungen finden sowohl an normalen Werktagen (Dienstag bis Donnerstag) als auch an Freitagen und Sonntagen – auch in der Urlaubszeit und während der Sommerferien statt.

Seit dem Jahr 2005 werden in Niedersachsen die Erhebungen vor allem auf Bundesautobahnen und Bundesstraßen durchgeführt. Demgegenüber erfolgen Erhebungen im Landesstraßennetz nur noch vereinzelt.

In der Tabelle 2.9 sind die Querschnittsbelastungen an einzelnen Zählstellen der SVZ als DTV_W in der Dimension Kfz/24 h angegeben.

Die Werte der SVZ 2010 passen in der Größenordnung gut mit den analysierten Werten aus dem Jahr 2012 überein.

Str.	Zst-Nr	von	bis	1995	2000	2005	2010
B 215	3321 0910	Schäferhof	Nienburg	19.553	19.029	19.304	19 222
B 215	3321 0458	Schäferhof	Leeseringen	9.670	9.189	9.189	9 276
B 215	3420 0459	Leese	Landesbergen	6.675	6.702	6.502	6.895
B 215	3420 0460	Stolzenau	Leese	8.008	8.626	8.381	7.647
B 441	3520 0482	B 482/ B 441	Leese	10.506	10.652	10.747	9.006
B 441	3520 0483	Loccum	Leese		6.258	6.962	5.328
B 482	3520 0490	Wasserstraße	Leese		4.963	4.575	3.879

Tab. 2.9: Verkehrsmengenentwicklung Angaben DTV_W [Kfz/24 h] (Quelle: Straßenverkehrszählung des Bundes)

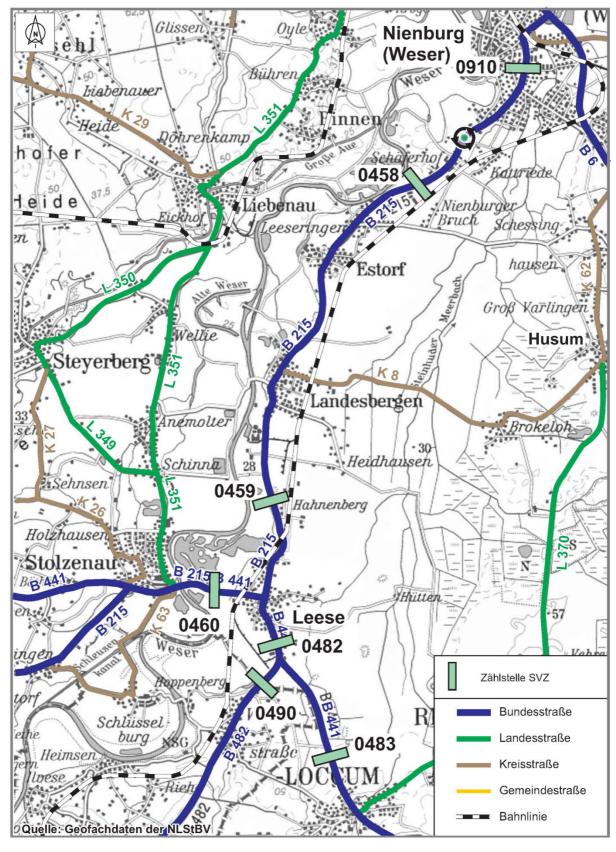


Abb. 2.10: Lage der Zählstellen der Straßenverkehrszählung

Analysebelastung 2013

B 215 / B 441 Stolzenauer Straße im Abschnitt zwischen Leese und Stolzenau

In der Ortsdurchfahrt von Leese wird eine Querschnittsbelastung von max. 8.500 Kfz/24 h erreicht. Die Querschnittsbelastung des Schwerverkehrs (Lkw > 3,5 t) wurde mit rd. 800 Lkw/24 h ermittelt.

B 215 Abschnitt Leese bis Landesbergen

Dieser Abschnitt nördlich der Ortsdurchfahrt von Leese wird von 7.150 Kfz/24 h befahren. Im bebauten Gebiet steigt die Querschnittsbelastung nördlich der Stolzenauer Straße nur geringfügig an.

Die B 215 wird in diesem Abschnitt von rd. 1.150 Lkw/24 h befahren.

B 215 Abschnitt Landesbergen bis Nienburg

In diesem Abschnitt wurden rd. 8.900 Kfz/24 h ermittelt.

Der Abschnitt wird von rd. 1.200 Lkw/24 h befahren.

B 441 Südabschnitt Leese bis Loccum

Die B 441 wird im Südabschnitt von 5.800 Kfz/24 h befahren.

Die Querschnittsbelastung liegt im Schwerverkehr bei 500 Lkw/24 h.

B 482 im Abschnitt zwischen Leese und Petershagen

Im Zuge der B 482 wurde eine Querschnittsbelastung von 4.300 Kfz/24 h analysiert.

Der Lkw-Verkehr beträgt auf der B 482 rd. 1.000 Lkw/24 h.

Verkehrsmodell - Analysebelastung 2013

Das Verkehrsmodell Niedersachsen wird vom Büro SSP bearbeitet. Die Inhalte werden wie folgt beschrieben: "das Verkehrsmodell Niedersachsen bildet in der Analyse den durchschnittlichen werktäglichen Verkehr (DTV_w, mittlerer Werktag Montag bis Samstag außerhalb der Urlaubszeit) ab. Grundlage für die Kalibrierung des Verkehrsmodells sind die bundesweite Straßenverkehrszählung (SVZ) und Daten der Dauerzählungen. Der Abgleich der Umlegungsergebnisse mit den Zählwerten ist ein iterativer Prozess. In einem ersten Schritt wird im Vorfeld das Netzmodell kalibriert, d.h. die Strecken-, Knoten- und Anbindungsparameter werden so angepasst, dass die Verteilung der möglichen Routen zwischen zwei Verkehrszellen im Netz plausibel ist. Die verbleibenden Unterschiede zwischen Zählwerten und Streckenbelastungen werden über eine Matrixkalibrierung minimiert. Dabei wird eine bestmögliche Übereinstimmung von Zähl- und Umlegungswert angestrebt. Hierbei ist zu berücksichtigen, dass jeder Zählwert einer gewissen Varianz unterliegt, da auch die Ergebnisse der SVZ

auf Momentaufnahmen mit vglw. geringer Stichprobe basieren und Resultate einer Modell-rechnung sind" (vgl. /16/).

Unter Berücksichtigung der analysierten Querschnittsbelastungen und der Knotenströme wird das Verkehrsmodell im Planungsraum geeicht. Um die geforderte Genauigkeit im Planungsraum zu erreichen, wurden folgenden Verkehrszellen gesplittet und verfeinert:

- Stolzenau
- Petershagen
- Rehburg-Loccum
- Leese
- Nienburg.

Darüber hinaus wurde der Ausbaustandard der Bundesstraße B 6 im Abschnitt zwischen Neustadt a. Rbge und Nienburg (Weser) an die mittlerweile vorhandene 4-Streifigkeit angepasst. Hierdurch hat sich sowohl die Streckenkapazität als auch die Reisegeschwindigkeit der Pkw erhöht.

Der Abbildungen in Anhang C sind sowohl die Gesamtverkehrsmengen in der Dimension Kfz/24 h als auch die Lkw-Mengen (> 3,5 t) in der Dimension Lkw/24 h zu entnehmen.

2.3 Ergebnisse der Verkehrsbefragung

Die Befragung der Verkehrsteilnehmer wurde an allen auf Leese zulaufenden Straßen jeweils in eine Fahrtrichtung durchgeführt.

An den Befragungszählstellen wurden die Verkehrsteilnehmer unter anderem nach dem Herkunfts- und Zielort befragt und bei der Nennung "Leese" nach Straßennamen, öffentlichen Einrichtungen, etc. nachgefragt, so dass eine sehr genaue Zuordnung der Verkehre möglich ist.

Die Ergebnisse der Befragungen werden zählstellenbezogen unter Berücksichtigung folgender Aspekte zusammengestellt:

- Lage der Befragungsstelle,
- Richtungsbelastung in Kfz/24 h,
- die wichtigsten Quellen und Ziele als Absolutwerte,
- eine grafische Auswertung der Quellen und Ziele.

Richtungsbelastung 4.400 Kfz / 24 h / B 1 (Stolzenauer Straße, B 215/ B 441)

Wichtige Quellen	Kfz /24 h	%	Wichtige Ziele	Kfz /24 h	%
Leese	1.050	24	Stolzenau	2.500	57
Rehburg-Loccum	1.000	23	Uchte	600	13
Nienburg/Weser	400	9	Steyerberg	300	8

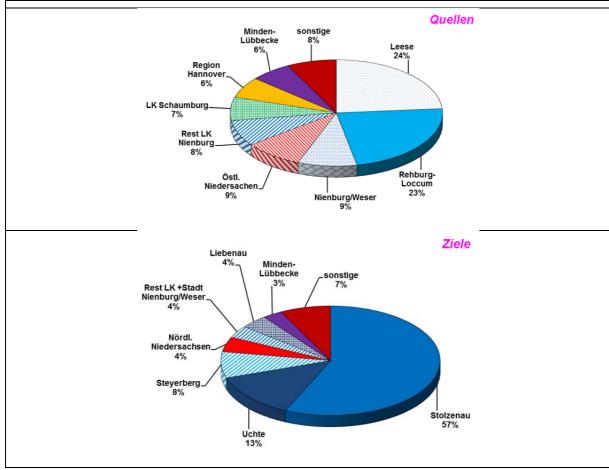


Abb. 2.11: Befragungszählstelle B 1: Stolzenauer Straße (B 215/ B 441)

Der überwiegende Anteil der Fahrten hat mit 57 % das Ziel Stolzenau.

Aufgrund der hohen Nennungen der Herkunftsräume mit Leese (24 %) und Rehburg-Loccum (23 %) wird deutlich, dass die B 215 / B 441 in diesem Abschnitt in starkem Maße von regionalen Verkehren befahren wird.

Richtungsbelastung 3.345 Kfz / 24 h / B 2 (Landesberger Straße, B 215)

Wichtige Quellen	Kfz /24 h	%	Wichtige Ziele	Kfz /24 h	%
Leese	600	18	Nienburg/Weser	1350	41
Rehburg-Loccum	400	12	Landesbergen	650	19
Stolzenau	350	11	Leese	550	17

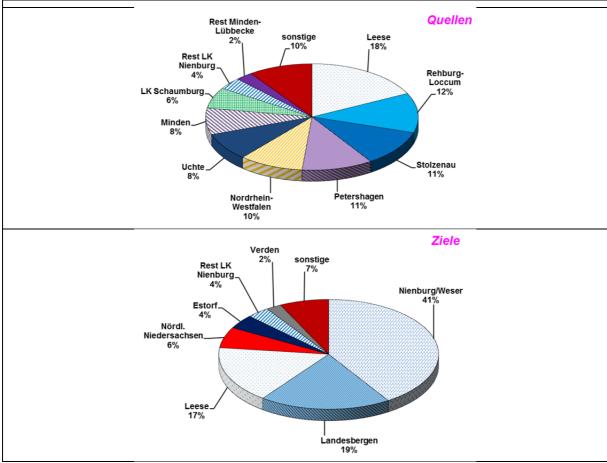


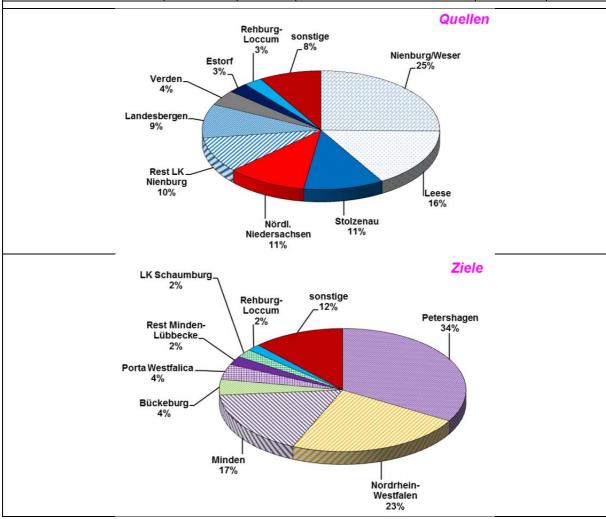
Abb. 2.12: Befragungszählstelle B 2: Landesberger Straße (B 215)

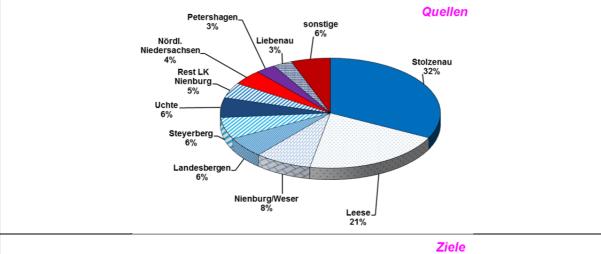
Die B 215 wird im Nordabschnitt in starkem Maße von Verkehren genutzt, die in die Stadt Nienburg (Weser) (41 %) sowie nach Landesbergen (19 %) fahren. Da die Befragungsstelle noch innerhalb der Ortslage von Leese lag, wurden 17 % aller Fahrten erfasst, die in Leese verbleiben.

Die Herkunftsräume verteilen sich auf wesentlich mehr Bereiche. Die stärksten Nennungen sind Leese (18 %) und Rehburg-Loccum mit 12 %.

Richtungsbelastung 2.050 Kfz / 24 h / B 3 (Weißer Stein, B 482)

Wichtige Quellen	Kfz /24 h	%	Wichtige Ziele	Kfz /24 h	%
Nienburg/Weser		25	Petershagen		34
Leese		16	Nordrhein-Westfalen		23
Stolzenau		11	Minden		17




Abb. 2.13: Befragungszählstelle B 3: Weißer Stein (B 482)

Bei den Fahrten an der Befragungszählstelle 3 wurde als wesentliches Ziel Petershagen mit 34 % ermittelt. Auch an dieser Zählstelle dominiert mit den Fahrten aus Nienburg (Weser) (25 %), Leese (16 %) und Stolzenau (11 %) der regionale Verkehr.

Richtungsbelastung 2.860 Kfz / 24 h / B 4 (Leeser Straße, B 441)

Wichtige Quellen	Kfz /24 h	%	Wichtige Ziele	Kfz /24 h	%
Stolzenau	900	32	Rehburg-Loccum	1.700	59
Leese	600	21	Östl. Niedersachsen	300	11
Nienburg/Weser	200	8	Region Hannover	250	8

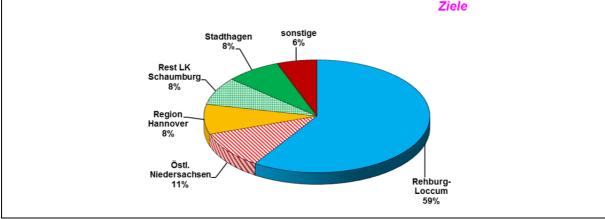


Abb. 2.14: Befragungszählstelle B 4: Leeser Straße (B 441)

Der stärkste Zielort ist Rehburg-Loccum mit 59 %. Die Herkunftsräume sind wiederum im Wesentlichen die regionalen Bereiche Stolzenau (32 %) und Leese (21 %) zu nennen.

Die Verkehrsbefragung wurde auf allen auf Leese zulaufenden Straßen durchgeführt. Daher werden die Verkehrsarten auch auf diese Gemeinde bezogen.

Bei den Verkehrsarten wird unterschieden:

Binnenverkehr (BV):	Fahrten, die ihren Start- und Endpunkt innerhalb von Leese haben
Quellverkehr (QV):	Fahrten, die ihren Startpunkt im und ihren Zielpunkt außerhalb von Leese haben
Zielverkehr (ZV):	Fahrten, die ihren Startpunkt außerhalb und ihren Zielpunkt in Leese haben
Durchgangsverkehr DV):	Fahrten, die ihren Start- und Zielpunkt außerhalb von Leese haben

Bezogen auf Leese wurden 80 % aller Fahrten im Durchgangsverkehr und 20 % im Ziel-/ Quellverkehr analysiert. Der Abbildung 2.15 sind die Durchgangsverkehrsbeziehungen zu entnehmen. Addiert man die Verkehrsbeziehungen von der B 441 aus südlicher Richtung und der B 482 aus südwestlicher Richtung, so fahren 4.200 Kfz/24 h in Richtung B 215 / B 441 (Stolzenau) und 3.350 Kfz/24 h in Nord-Süd-Richtung durch Leese.

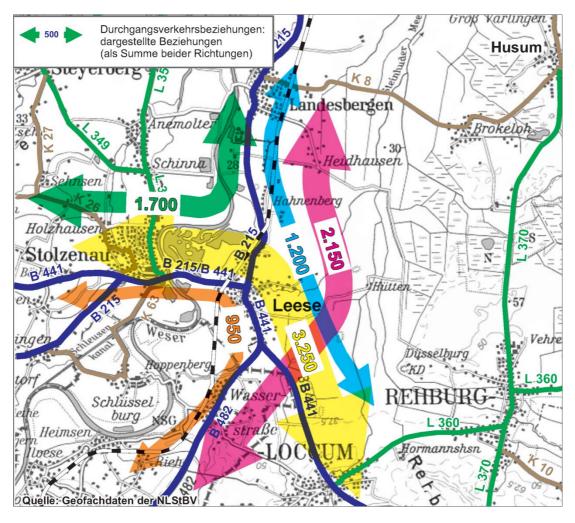


Abb. 2.15: Durchgangsverkehr bezogen auf Leese (Kfz/24 h)

2.4 ÖPNV-Angebot

Die Linie 60 der VLN (Verkehrsgesellschaft Landkreis Nienburg) verläuft von Nienburg (Weser) nach Stolzenau. Entlang der B 215 werden Esdorf und Landesbergen bedient. Über Leese und die B 215/ B 441 gelangt die Linie nach Stolzenau. Mit 27 Fahrten (Hin -und Rückfahrten) wird ca. stündlich eine Fahrt angeboten.

2.5 Pendlerbeziehungen

In den Tabellen 2.10 und 2.11 sind die Pendler (sozialversicherungspflichtig Beschäftigte) der Gemeinden mit dem Stichtag 30.06.2012 (vgl. /13/) im Planungsraum zusammengestellt. Die stärksten Einpendlerzahlen mit knapp 2.000 sozialversicherungspflichtig Beschäftigten weist die Statistik für Stolzenau auf. Dabei sind 739 den Binnenpendlern zuzuordnen. ei den übrigen drei Gemeinden liegt die Einpendlerzahl bei gut 500 Personen.

Einpendler von	Estorf	Landes- bergen	Leese	Stolzenau
Region Hannover	< 15	32	< 15	44
Diepholz	< 15	< 15	< 15	42
Estorf	72	22	< 15	23
Landesbergen	21	135	35	62
Leese	< 15	16	126	60
Liebenau	< 15	< 15	< 15	58
Marklohe	19	< 15	< 15	27
Nienburg (Weser)	168	64	34	133
Raddestorf	< 15	< 15	< 15	50
Rehburg-Loccum	< 15	28	34	87
Steyerberg	22	25	32	147
Stolzenau	227	36	90	739
Uchte	< 15	< 15	< 15	115
Warmsen	< 15	< 15	< 15	36
Lk Nienburg (übrige Gemeinden)	69	71	97	164
Minden	< 15	< 15	< 15	15
Petershagen	< 15	9	38	75
Kreis Minden-Lübbecke (übrige Gem.)	< 15	7	5	10
übrige Einpendler	< 15	62	33	101
Summe	501	517	524	1.988

Tab. 2.10: Einpendler (sozialversicherungspflichtig Beschäftigte) (Quelle: /13/)

Auch bei den Auspendlern weist die Gemeinde Stolzenau mit über 2.500 Pendlern die höchste Anzahl auf. Neben den Binnenpendlern sind insbesondere die Verflechtungen nach Nienburg (Weser), Rehburg-Loccum und Minden zu nennen.

Aus Landesbergen pendeln gut 950 Personen, von denen allein 227 nach Nienburg (Weser) fahren.

In den Gemeinden Estorf und Leese weist die Statistik rd. 600 Auspendler auf.

Auspendler von	Estorf	Landes- bergen	Leese	Stolzenau
Region Hannover	< 15	166	74	218
Lk Diepholz	< 15	16	< 15	64
Diepenau	< 15	< 15	< 15	17
Estorf	72	21	< 15	< 15
Landesbergen	22	135	16	36
Leese	< 15	35	126	90
Liebenau	< 15	< 15	< 15	70
Marklohe	< 15	< 15	< 15	16
Nienburg (Weser)	237	227	77	297
Raddestorf	< 15	< 15	< 15	18
Rehburg-Loccum	16	60	61	179
Steyerberg	23	18	16	129
Stolzenau	< 15	62	60	739
Uchte	< 15	< 15	< 15	118
Warmsen	< 15	< 15	< 15	23
Lk Nienburg (übrige Gemeinden)	14	58	47	71
Lk Schaumburg	< 15	19	24	51
Minden	< 15	< 15	< 15	125
Petershagen	< 15	< 15	< 15	45
Kreis Minden-Lübbecke (übrige Gem.)	< 15	40	51	58
übrige Einpendler	< 15	99	62	160
Summe	609	956	614	2.524

Tab. 2.11: Auspendler (sozialversicherungspflichtig Beschäftigte) (Quelle: /13/)

Die Pendlerstatistik unterstreicht die Ergebnisse der Verkehrsbefragungen mit den engen regionalen Verflechtungen der Gemeinden untereinander bzw. zu den Städten und Gemeinden Nienburg (Weser) und Rehburg-Loccum.

3. Prognoseannahmen

3.1 Überregionale Prognosen

Als Prognosehorizont wird bei Straßenbaumaßnahmen das Jahr 2025 gewählt. Im Rahmen der strukturellen Entwicklung werden die geplanten gewerblichen Entwicklungsflächen berücksichtigt. Zur Einschätzung der Angaben wurden vorliegenden Daten des Bestandes und überregionale Prognosen ausgewertet.

Abb. 3.1: Erwerbstätigen- und Bevölkerungsentwicklung

Datenbasis: N-Bank-Erwerbstätigenprojektion des NIW 2009-2030, Berechnungsstand 12/2010, N-Bank-Bevölkerungsprognose des NIW: Variante II B (mittlere Variante), Berechnungsstand 11/2010

Die Prognose 2030 der NBank mit Berechnungsstand Ende 2010 weist für den Landkreis Nienburg gegenüber dem Bezugsjahr 2009 eine Zunahme der Erwerbstätigen um 1 % auf.

Bei der Bevölkerungsentwicklung prognostiziert die NBank demgegenüber für den Landkreis Nienburg eine Abnahme um 10 %.

3.2 Allgemeine Verkehrszunahme

Grundsätzlich ist neben den durch das Gewerbegebiet neu induzierten Verkehren auch eine allgemeine Verkehrszunahme zu berücksichtigen. Die Ermittlung des im Prognosejahr 2025 zu erwartenden Motorisierungsgrades basiert u.a. auf der Shell-Prognose /7/ aus dem Jahr 2009. Die Wirtschaftsanalysen der Shell Deutschland Oil GmbH mit ihren Abschätzungen der Verkehrsentwicklung bis 2030 beziehen sich auf das Gebiet der gesamten Bundesrepublik Deutschland. Für die Bundesrepublik Deutschland ergeben sich die in der Tabelle 3.1 dargestellten Faktoren für die Veränderung der Jahresfahrleistung.

Bezugsjahr	2007	2025	2030
Bevölkerung	82.200.000	ca. 80.500.000	78.500.000
Pkw-Bestand	47.000.000	ca. 49.000.000	49.500.000
Fahrleistung/Pkw	12.500	ca.11.900	11.900
Gesamtfahrleistung in			
Mio km/Jahr	588.000	ca. 592.500	590.000
Faktor für die Veränder	ung der Gesamtfahrleistung:	1,008	1,003

Quelle: Shell Pkw-Szenarien 2009 (Anmerkung: die Werte für 2025 sind nicht explizit angeben, können aber aus den Angaben zu 2020 und 2030 abgeleitet werden)

Tab. 3.1: Veränderung der Pkw-Jahresfahrleistung

In das Landesverkehrsmodell Niedersachsen sind die Prognosen der deutschlandweiten Verkehrsverflechtungen integriert. "Die der Fortschreibung des Verkehrsmodells Niedersachsen zugrunde liegende Verflechtungsprognose des BMVBS prognostiziert die Entwicklung der Bevölkerung auf Kreisebene für den Prognosehorizont 2025. Die Prognose geht für den Zeitraum bis 2025 für Niedersachsen von einem geringen Rückgang der Einwohnerzahlen (- 1,5 %) aus, auch wenn innerhalb von Niedersachsen für die einzelnen Kreise und kreisfreien Städte deutlich unterschiedliche Entwicklungen gesehen werden" (vgl. /16/). Somit wird eine verkehrszellenscharfe Veränderung des Verkehrsaufkommens berücksichtigt.

Aufgrund der unter Abschnitt 3.3 berücksichtigten strukturellen Entwicklungen in der Samtgemeinde Mittelweser wird **keine allgemeine Verkehrszunahme** angesetzt.

3.3 Verkehrsentwicklung infolge der Planung von Gewerbegebieten

3.3.1 Interkommunales Gewerbegebiet Nienburg-Süd/Leeseringen

Die Stadt Nienburg (Weser) und die Samtgemeinde Mittelweser planen das Interkommunale Gewerbegebiet Nienburg / Landesbergen. Hierfür liegt ein Entwicklungskonzept /9/ vor. Danach beträgt die gesamte Planungsfläche 211,6 ha, von denen 91,0 ha auf die Stadt Nienburg (Weser) und 120,6 ha auf die Samtgemeinde Landesbergen fallen.

Zur Verdeutlichung der Planungsabsichten wurde eine Konzeptvariante aus dem Entwicklungskonzept für das Logistik- und Industriezentrum Nienburg-Süd / Leeseringen in der Abbildung 3.2 übernommen

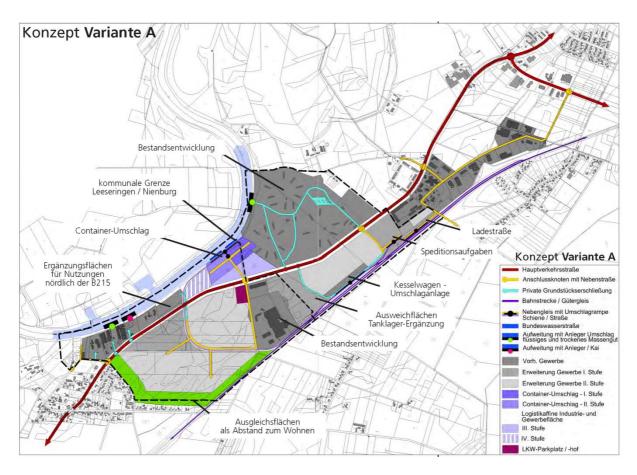


Abb. 3.2: Entwicklungskonzept (Variante A) für das Logistik- und Industriezentrum Nienburg-Süd / Leeseringen /9/

Es werden folgende Bereiche unterschieden:

Teilflächen	Gesamtfläche	bereits genutzt
Tanklager	59,1 ha	ca. 50 ha
Umschlagsanlage	5,7 ha	
logistikaffine Betriebe	7,9 ha	
Speditionsbereich	11,4 ha	
GI-Gebiet Leeseringen	78.3 ha	ca. 50 ha
Summe	162.3 h	ca. 100 ha

Tab. 3.2: Flächenaufteilung Logistik- und Industriezentrum Nienburg-Süd / Leeseringen

Die dem Konzept zugrundeliegende differenzierte Flächenaufteilung ist dem Anhang A zu entnehmen.

KV - Anlage

Am geplanten Standort soll ein trimodales Logistik- und Industriezentrum entwickelt werden, das eine Verknüpfung zwischen Binnenschiff (Weser), Straße und Schiene erreicht. Geplant ist die Entwicklung der KV-Anlage (kombinierter Ladungsverkehr) in einzelnen Bauabschnitten. Der erste Bauabschnitt umfasst ca. 1,6 ha Fläche, auf denen eine Containerladefläche von max. 49.000 TEU vorhanden sein wird. Im 2. Bauabschnitt kann bei einem 2-Schicht-Betrieb die Kapazität der Containerflächen auf 114.000 TEU erhöht werden.

Die Potenzialstudie der Planco-Consulting /10/ sieht im engeren Einzugsgebiet ein Potenzial von 582.500 TEU im Prognosejahr 2025 (Basis: Prognose der deutschlandweiten Verkehrsverflechtungen für das Jahr 2015). Davon werden ohne den Bau der KV-Anlage 501.100 TEU auf die Straße und 645 TEU auf die Bahn entfallen (vgl. /10/, Tabelle 3-20 auf Seite 30).

Bei der Ermittlung des zukünftigen Containeraufkommens der geplanten KV-Anlage Nienburg sind die im regionalen Einzugsbereich liegenden vorhandenen KV-Anlagen (Hannover und Minden) zu berücksichtigen. Vor diesem Hintergrund wird ein KV-Potenzial für die geplante Anlage von 80.762 TEU gesehen, die auf Binnenschiffe verladen werden können. Auf Seite 33 der Potenzialanalyse /10/ wird darauf hingewiesen, dass die genannte Zahl das Nachfragepotenzial nach Containerumschlägen benennt, während das grbv-Gutachten /9/ die angebotsseitige Umschlagskapazität zwischen 20.000 und 114.000 TEU aufzeigt.

Zusammenfassend ist festzustellen, dass die Potenzialstudie /10/ aufgrund der Befragung der im engeren Einzugsgebiet angesiedelten Gewerbegebetriebe ein Prognoseaufkommen

von 12.700 TEU sieht, die schwerpunktmäßig mit Lkw transportiert werden. Insofern ist zur Zeit der Erstellung der Potenzialstudie eine Umschlagskapazität von über 100.000 TEU nicht erforderlich. Für die Ermittlung des Verkehrsaufkommens einer KV-Anlage wird daher von einer jährlichen Umschlagskapazität von 80.000 TEU ausgegangen. Unter Zugrundelegung von Parametern aus vergleichbaren Untersuchungen (vgl. /17/) lässt sich das Verkehrsaufkommen (Details siehe Anhang B) wie folgt ermitteln:

Pkw-Aufkommen 137 Pkw/24 h
Lkw-Aufkommen 220 Lkw/24 h
Gesamtaufkommen 357 Kfz/24 h.

GE Gebiet-Erweiterung

Für die Ermittlung des Verkehrsaufkommens des geplanten interkommunalen Gewerbe- und Industriegebietes wird von einer Bruttogröße von knapp 70 ha ausgegangen. Davon werden knapp 20 ha für der Logistik und dem Speditionsgewerbe und die übrigen 50 ha gewerblicher Nutzung (teilweise Ergänzung vorhandener Betriebe) zugeordnet.

Je nach Art der anzusiedelnden Gewerbebetriebe ist die Verkehrserzeugung unterschiedlich zu sehen. Die der Berechnung des Verkehrsaufkommens zugrundeliegenden Parameter sind dem Programmsystem Ver_Bau /18/ entnommen. Die Berechnungsergebnisse sind dem Anhang B zu entnehmen. Aufgrund des vorliegenden Entwicklungskonzeptes /9/ und der Größe des Gebietes wurden 15 bis 35 Beschäftigte pro ha angesetzt. Differenziert wird beim Verkehrsaufkommen zwischen:

- Beschäftigtenverkehr,
- Kundenverkehr,
- Geschäftsverkehr und
- Güterverkehr.

Beim Beschäftigtenverkehr wird von einer mittleren Wegeanzahl von 2,1 bis 2,2 pro Beschäftigten, einer Anwesenheitsquote von 85 % und einem Anteil von Kfz-Fahrten von 95 bis 100 % ausgegangen. Bei der Nutzung des öffentlichen Personennahverkehrs wird unterstellt, dass die Beschäftigen im Schichtbetrieb diesen nicht benutzen. Bei den Beschäftigten im Normalbetrieb ist die Taktfolge während der morgendlichen und nachmittäglichen Spitzenstunden zumindest auf einen 30-Minuten-Takt zu verdichten, um ein attraktives Busangebot zu schaffen

Pkw-Aufkommen 2.160 Pkw/24 h
Lkw-Aufkommen 1.050 Lkw/24 h
Gesamtaufkommen 3.210 Kfz/24 h

3.3.2 Gewerbegebiet B-Plan Nr. 101 "Südring" Nienburg (Weser)

Im Rahmen des Bebauungsplanes Nr. 101 "Südring" der Stadt Nienburg (Weser), in dem die Trasse des Südrings planerisch festgelegt wird, ist auch die Ausweisung von knapp 20 ha Bruttogewerbegebietsflächen enthalten. Für die Ermittlung des Verkehrsaufkommens werden 25 Beschäftigte pro Hektar angesetzt (vgl. Anhang B). Aufgrund der Lage des Gewerbegebietes am Stadtrand von Nienburg (Weser) wird von einem hohen Anteil von Beschäftigten ausgegangen, die auf dem Arbeitsweg das Fahrrad oder den Bus nutzen.

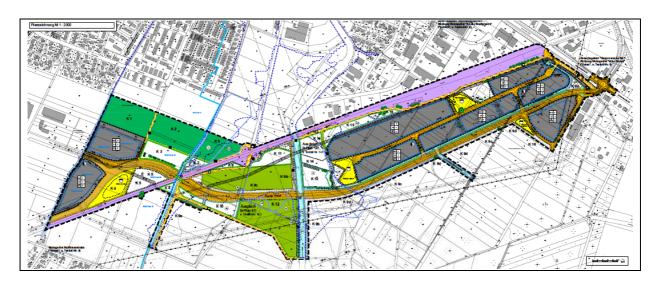


Abb. 3.3: B-Plan Nr. 101 "Südring" der Stadt Nienburg (Weser) Quelle: Stadt Nienburg (Weser)

Pkw-Aufkommen 660 Pkw/24 h
Lkw-Aufkommen 240 Lkw/24 h
Gesamtaufkommen 900 Kfz/24 h

3.3.3 Verkehrsaufkommen aller gewerblichen Neuplanungen

Im Planungsraum werden von der Samtgemeinde Mittelweser und der Stadt Nienburg (Weser) Bruttogewerbegebietsflächen in einer Größenordnung von über 90 ha ausgewiesen.

Auf der Basis anerkannter Berechnungsverfahren werden 1.625 Arbeitsplätze generiert.

Die Anzahl der zusätzlichen Arbeitsplätze ist im Vergleich zu den vorhandenen Arbeitsplätzen in der Region als sehr ambitioniert einzuschätzen. In den Städten und Gemeinden Estorf, Landesbergen, Leese und Nienburg sind in der Summe 14.250 sozialversicherungspflichtig Beschäftigte der Statistik zu entnehmen. Insofern bedeuten die 1.625 bei der Verkehrserzeugung zusätzlich angesetzten Arbeitsplätze in den ausgewiesenen Gewerbegebie-

ten eine Zunahme von mehr als 10 %. Im Vergleich mit den Angaben der NBank (vgl. Abbildung 3.1) ist dies eine wesentlich stärkere Erhöhung der Arbeitsplätze.

	Estorf	Landesbergen	Leese	Nienburg
Soz. vers. Beschäftigte	501	517	524	12.710

Tab. 3.3: Anzahl der sozialversicherungspflichtig Beschäftigten (Quelle: /13/)

Durch die Erweiterung und Neuausweisung von gewerblichen Flächen entsteht ein Gesamtverkehrsaufkommen als Summe beider Richtungen von 4.530 Kfz/24 h. Die Differenzierung nach Beschäftigten, Kunden, Lieferverkehr und Geschäftsfahrten ist der Abbildung 3.4 zu entnehmen.

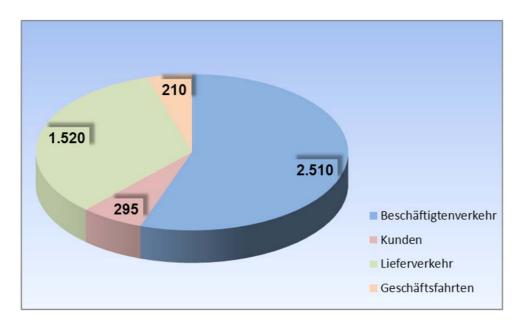


Abb. 3.4: Verkehrsaufkommen der gewerblichen Entwicklungsflächen

Den unterschiedlichen Nutzungen werden differenzierte Tagesganglinien bzgl. des zeitlichen Auftretens zugewiesen. Dies ist insbesondere im Bereich der Logistikbetriebe wichtig, da diese zum Teil im Zwei-Schicht-Betrieb betrieben werden. Hierdurch treten die Beschäftigtenfahrten azyklisch zu den allgemeinen verkehrlichen Spitzenstunden auf. Der Abbildung 3.5 ist die zeitliche Verteilung des Neuverkehrs zu entnehmen.

Aufgrund der differenzierten Betrachtung der Fahrtzwecke kann der Anteil des Ziel- und Quellverkehrs in den verkehrlichen Spitzenstunden ermittelt werden. Dieser wird wie folgt angenommen:

morgendliche Spitzenstunde: 3 % des Gesamtaufkommens im Quellverkehr

18 % des Gesamtaufkommens im Zielverkehr

nachmittägliche Spitzenstunde:
15 % des Gesamtaufkommens im Quellverkehr

3 % des Gesamtaufkommens im Zielverkehr

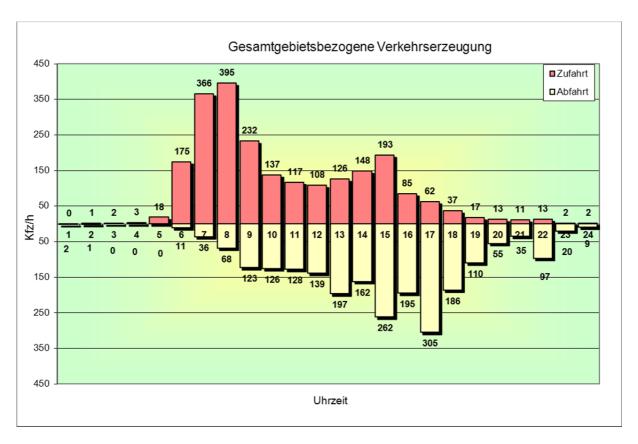


Abb. 3.5: Tageszeitliche Verteilung des Gewerbeverkehrs

3.4 Entwicklungsflächen in der Stadt Nienburg (Weser)

Im Verkehrsentwicklungsplan (VEP) der Stadt Nienburg (Weser) aus dem Jahr 2005 /19/ sind Flächen der Strukturerweiterung dargestellt (vgl. Anhang B) und die verkehrlichen Auswirkungen berechnet. Zwischenzeitlich sind Teilgebiete bereits realisiert, so dass die verkehrlichen Wirkungen in der Analyse enthalten sind.

Für die Prognoseberechnungen wurde das zusätzliche Verkehrsaufkommen von Teilgebieten aus dem VEP abgeleitet und als zusätzliches Verkehrsaufkommen berücksichtigt. Dieses bezieht sich primär auf die Verkehrszellen Nienburg-Ost, Nienburg-Nordost und Nienburg-Nord mit einer Gesamtzunahme von 3.600 Kfz/24 h als Summe beider Richtungen.

4. Ergebnisse der Verkehrsumlegungsberechnungen

Neben der Analyse, die den Verkehr 2013 im Straßennetz 2013 abbildet, werden verschiedene Prognosefälle (Verkehr 2025) untersucht.

Das Analysestraßennetz 2013 berücksichtigt bereits den vollständigen vierstreifigen Ausbau der B 6 zwischen Neustadt und Hannover (Neuabschnitt Himmelreich bis Nienburg).

Planfall	Straßennetz	Verflechtungsmatrix
Prognose-Nullfall	Analysenetz	großräumige Prognose
Prognose-Nullfall - Struktur	Analysenetz	großräumige Prognose plus strukturelle Änderungen im Planungsraum
Bezugsfall	Analysenetz plus großräumige Maßnahmen	großräumige Prognose plus strukturelle Änderungen im Planungsraum
Planfälle mit den Ortsumge- hungen Leeseringen / Lan- desbergen und Leese im Zuge der B 215	Analysenetz plus großräumige Maßnahmen plus Maßnahmen plus Maßnahmen im Planungsraum	großräumige Prognose plus strukturelle Änderungen im Planungsraum

Tab. 4.1: Übersicht der Planfälle

Der Prognose-Nullfall bildet den Verkehr 2025 im Netz 2013 ab. Es werden also die Auswirkungen der Verkehrsentwicklung (ohne und mit strukturellen Änderungen im Planungsraum) bei unverändertem Straßennetz ermittelt.

Der Bezugsfall ist der Vergleichsfall für die Ermittlung der verkehrlichen Wirkungen des Neubaus der Ortsumgehungen im Zuge der B 215. Er berücksichtigt alle Straßenbauvorhaben, deren Realisierung bis 2025 zu erwarten ist, allerdings ohne den Neubau im Zuge der B 215:

- indisponible, fest disponierte Vorhaben der Bundesverkehrswegeplanung 2003,
- sonstige Vorhaben des vordringlichen Bedarfs des geltenden Bedarfsplans für die Bundesfernstraßen,
- sonstige Vorhaben, die aus Sicht des Landes Niedersachsen bis zum Jahr 2025 als realisiert anzunehmen sind und
- die Südumgehung der Stadt Nienburg (Weser).

In Anhang C befinden sich die Verkehrsmengendarstellungen als Absolutdarstellungen sowie die Differenzbelastungen zur Analyse 2013 bzw. zum Bezugsfall.

4.1 Prognose-Nullfall

Beim Prognose-Nullfall wird ausschließlich von der Realisierung der Straßenneubaumaßnahmen des vordringlichen Bedarfs des Bundesverkehrswegeplans (BVWP) ausgegangen. Bezüglich der Verkehrsnachfrage wird die Prognose der deutschlandweiten Verkehrsverflechtung berücksichtigt.

Die Modellergebnisse verdeutlichen, dass auf der B 441 im Abschnitt Leese – Loccum – Wunstorf keine merkbaren Veränderungen bzgl. der Verkehrsbelastungen auftreten. Demgegenüber steigt der (über-)regionale Gesamtverkehr im Zuge der B 215 (Nienburg) zur B 482 um ca. 1.000 Kfz/24h und der Schwerverkehr knapp 50 Fz/24 h an.

Die unterschiedlichen Belastungsänderungen im Planungsraum sind damit zu begründen, dass die (über-)regionalen Verkehrsbeziehungen aus Nienburg in Richtung Hannover über die gut ausgebaute B 6 abgewickelt werden. Für diese Verkehrsströme stellt die Route über die B 215 / B 441 keine attraktive Alternative dar. Demgegenüber sind Parallelrouten in den Raum Minden bzw. zur A 30 nur bedingt vorhanden.

Straße	Abschnitt	P0-Fall	Veränderung gegenüber Analyse	
		Kfz/24h	Kfz/24h	%
B 441	OD Leese Süd	12.000	+900	+8%
B 215/B 441	OD Leese West	8.500	0	-
B 215	OD Leese Nord	8.300	+1.100	+15%
	Leese An der Riede	400	0	-
B 441	Süd	5.700	-200	-3%
B 482		5.400	+1.000	+23%
B 215/B 441		8.600	-100	-1%
B 215	Landesbergen Süd	8.200	+1.100	+15%
B 215	Landesbergen Nord	10.300	+1.400	+16%
B 215	OD Estorf	10.700	+1.500	+16%
B 215	nördlich Leeseringen	10.700	+1.600	+18%

Tab. 4.2: P 0-Fall – Veränderung der Querschnittsbelastung gegenüber der Analyse – **Gesamtverkehr** [DTV_W in Kfz/24 h]

Straße	Abschnitt	P0-Fall	Veränderung gegenüber Analyse	
		Kfz/24h	Kfz/24h	%
B 441	OD Leese Süd	1.630	+30	+2%
B 215/B 441	OD Leese West	810	-20	-2%
B 215	OD Leese Nord	1.190	+40	+3%
	Leese An der Riede	20	0	-
B 441	Süd	470	0	-
B 482		1.060	+50	+5%
B 215/B 441		810	-20	-2%
B 215	Landesbergen Süd	1.190	+50	+4%
B 215	Landesbergen Nord	1.310	+110	+9%
B 215	OD Estorf	1.320	+130	+11%
B 125	nördlich Leeseringen	1.380	+120	+10%

Tab. 4.3: P0-Fall – Veränderung der Querschnittsbelastung gegenüber der Analyse – **Schwerverkehr** [Lkw/24 h]

4.2 Prognose-Nullfall – Struktur

In Ergänzung zum Prognose-Nullfall (vgl. Abschnitt 4.1) wird bei dem Prognose-Nullfall-Struktur die Entwicklung der Gewerbegebiete – wie im Abschnitt 3 beschrieben – berücksichtigt. Dadurch erhöht sich das Verkehrsaufkommen im Planungsraum um die Verkehrsmengen, die die regionale Politik durch Ausweisung von Bauflächen beeinflussen kann.

Da die berücksichtigten Gewerbegebietsentwicklungen im Norden des Planungsraumes liegen und deren Verkehrsverflechtungen – auch des interkommunalen Logistik- und Industriezentrums Leeseringen / Nienburg – eher lokaler Art sind, sind die Veränderungen im südlichen Straßennetz eher gering.

Straße	Abschnitt	P0-Fall Struktur	Veränderung gegenüber Analyse	
		Kfz/24h	Kfz/24h	%
B 441	OD Leese Süd	12.100	+1.000	+9%
B 215/B 441	OD Leese West	8.500	0	-
B 215	OD Leese Nord	8.500	+1.300	+18%
	Leese An der Riede	400	0	-
B 441	Süd	5.800	-100	-2%
B 482		5.500	+1.100	+25%
B 215/B 441		8.700	0	-
B 215	Landesbergen Süd	8.500	+1.400	+20%
B 215	Landesbergen Nord	10.600	+1.700	+19%
B 215	OD Estorf	11.000	+1.800	+20%
B 215	nördlich Leeseringen	12.200	+3.100	+34%

Tab. 4.4: P 0-Fall-Struktur – Veränderung der Querschnittsbelastung gegenüber der Analyse – **Gesamtverkehr** [DTV_W in Kfz/24 h]

Straße	Abschnitt	P0-Fall Struktur	Veränderung gegenüber Analyse	
		Kfz/24h	Kfz/24h	%
B 441	OD Leese Süd	1.790	+190	+12%
B 215/B 441	OD Leese West	830	0	-
B 215	OD Leese Nord	1.390	+240	+21%
	Leese An der Riede	20	0	-
B 441	Süd	500	+30	+6%
B 482		1.170	+160	+16%
B 215/B 441		830	0	-
B 215	Landesbergen Süd	1.410	+270	+24%
B 215	Landesbergen Nord	1.660	+460	+38%
B 215	OD Estorf	1.680	+490	+41%
B 125	nördlich Leeseringen	2.090	+830	+66%

Tab. 4.5: P0-Fall-Struktur – Veränderung der Querschnittsbelastung gegenüber der Analyse – **Schwerverkehr** [Lkw/24 h]

4.3 Bezugsfall

Unter dem Bezugsfall wird die Verkehrsmengenentwicklung ohne Berücksichtigung der Ortsumgehungen im Zuge der B 215, aber mit Südtangente von Nienburg (Weser) und Prognose der Gesamtverkehrsnachfrage verstanden. Dieser Fall wird auch als Vergleichsfall für die Planungsfälle herangezogen.

Straße	Abschnitt	Bezugsfall	Veränderung gegenüber P 0-Fall	
		Kfz/24h	Kfz/24h	%
B 441	OD Leese Süd	12.200	+200	+2%
B 215/B 441	OD Leese West	8.600	+100	+1%
B 215	OD Leese Nord	8.700	+400	+5%
	Leese An der Riede	400	0	-
B 441	Süd	5.800	+100	+2%
B 482		5.600	+200	+4%
B 215/B 441		8.700	+100	+1%
B 215	Landesbergen Süd	8.700	+500	+6%
B 215	Landesbergen Nord	11.100	+800	+8%
B 215	OD Estorf	11.600	+900	+8%
B 215	nördlich Leeseringen	12.600	+1.900	+18%

Tab. 4.6: Bezugsfall – Veränderung der Querschnittsbelastung gegenüber dem P 0-Fall – **Gesamtverkehr** [DTV_W in Kfz/24 h]

Straße	Abschnitt	Bezugsfall	Veränderung gegenüber P 0-Fall	
		Kfz/24h	Kfz/24h	%
B 441	OD Leese Süd	1.830	+200	+12%
B 215/B 441	OD Leese West	820	+10	+1%
B 215	OD Leese Nord	1.460	+270	+23%
	Leese An der Riede	20	0	-
B 441	Süd	490	+20	+4%
B 482		1.220	+160	+15%
B 215/B 441		820	+10	+1%
B 215	Landesbergen Süd	1.470	+280	+24%
B 215	Landesbergen Nord	1.740	+430	+33%
B 215	OD Estorf	1.760	+440	+33%
B 215	nördlich Leeseringen	1.280	-100	-7%

Tab. 4.7: Bezugsfall – Veränderung der Querschnittsbelastung gegenüber dem P 0-Fall – **Schwerverkehr** [Lkw/24 h]

4.4 Straßennetzvarianten

4.4.1 Erschließung Gewerbegebietes Nienburg-Süd / Leeseringen

Die B 215_n wird im Bereich der Gewerbegebiete Nienburg-Süd / Leeseringen östlich der Bahnlinie verlaufen. Vorgesehen ist der Anschluss des Gewerbegebietes an das überörtliche Straßennetz (wie im Bestand im Norden) und mittels eines neuen Anschlusses an die B 215_n. In der Abbildung 4.1 ist eine mögliche Lage des Anschlusses dargestellt. Aufgrund der Bahnquerung wird der Anschluss als teilplangleicher Knotenpunkt mit Lichtsignalanlage konzipiert. Die genaue Lage der Straßenanbindung wird u.a. aufgrund der Flächen für die Betriebsausweitung des bestehenden Gewerbegebietes und der Gleisanlagen der KW-Anlage bestimmt. Aufgrund des prognostizierten Verkehrsaufkommens des Gewerbegebietes ist ein Ausbau der Straßenverbindung als Industriestraße gem. RASt 06 /2/ ausreichend.

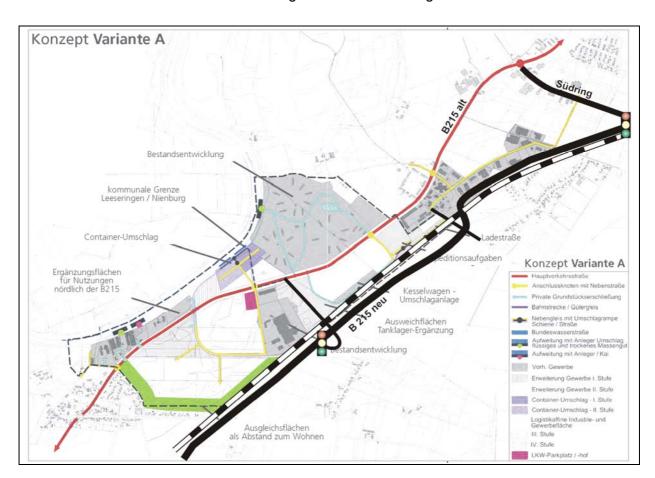


Abb. 4.1: Anbindung des Gewerbegebietes Nienburg-Süd / Leeseringen

Bei der Verteilung des Verkehrs im Straßennetz ist zwischen dem Personenverkehr, der über 65 % des Gesamtverkehrsaufkommens ausmacht, und dem Schwerverkehr zu unterscheiden. Bei der räumlichen Zuordnung des arbeitsplatzbezogenen Berufsverkehrs wurde die Pendlerstatik ausgewertet. Daher ist dieser Teil des Verkehrsaufkommens sehr stark

nördlich ausgerichtet. Bei den Geschäfts- und Lieferfahrten ist dagegen eine Ausrichtung auf die B 6 (Süd- und Nordrichtung) gegeben. In der Abbildung 4.2 ist die Verteilung des Gewerbegebietsverkehrs dargestellt.

Bei der Routenwahl der Fahrzeuge aus Richtung Norden wurde unterstellt, dass die wegweisende Beschilderung über die B 6 / Südring von Nienburg führt, so dass der Berliner Ring nicht als Hauptzufahrtsroute genutzt wird.

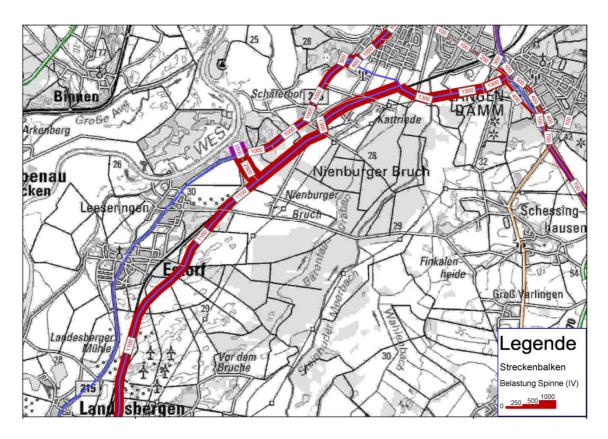


Abb. 4.2: Verteilung der Verkehrsströme des Gewerbegebietes Nienburg-Süd / Leeseringen

4.4.2 Variante 1: B 215_n

Untersucht wird die Verlegung der B 215 im Abschnitt Landesbergen bis zum Südring in der Stadt Nienburg (Weser). Von der Stadt Nienburg (Weser) ist geplant, dass der Ostast des Südringes bevorrechtigt mit der B 215_n verknüpft wird, während der Westast des Südringes nachrangig angebunden werden soll.

Im Zuge der B 215_n sind folgende Verknüpfungen mit dem Bestandsstraßennetz vorgesehen:

- Anbindung interkommunales Logistik- und Industriezentrum Leeseringen / Nienburg
- Estorf
- Landesbergen Mitte
- Landesbergen Süd (B 215).

Nach der RAL /3/ ist die B 215 der Straßenkategorie II (überregionale Verbindungsfunktionsstufe) und somit der Entwurfsklasse EKL 2 zuzuordnen. Als Regelquerschnitt wird der RQ 11,5 + gewählt.

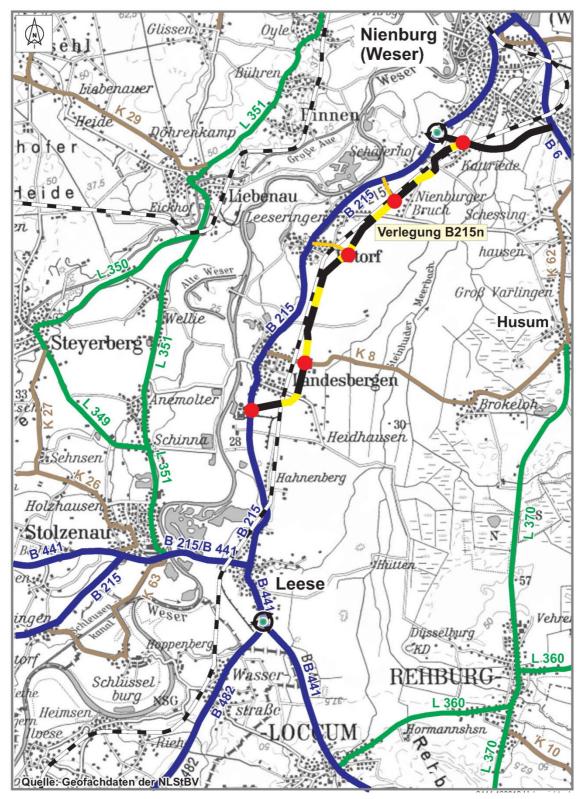


Abb. 4.3: Variante 1 – Übersicht Verlegung B 215 $_n$

Straße	Abschnitt	Variante V 1		derung nüber
			Analyse	Bezugsfall
		Kfz/24h	Kfz/24h	Kfz/24h
B 441	OD Leese Süd	12.800	+1.700	+600
B 215/B 441	OD Leese West	8.600	+100	0
B 215	OD Leese Nord	9.800	+2.600	+1.100
	Leese An der Riede	400	0	0
B 441	Süd	5.800	-100	0
B 482		6.200	+1.800	+600
B 215/B 441		8.600	-100	-100
B 215	Landesbergen Süd	1.200	-5.900	-7.500
B 215	Landesbergen Nord	800	-8.100	-10.300
B 215	OD Estorf	400	-8.800	-11.200
B 215	nördlich Leeseringen	1.300	-7.800	-11.300

Tab. 4.8: Variante 1: Veränderung der Querschnittsbelastungen gegenüber der Analyse und dem Bezugsfall – **Gesamtverkehr** [DTV_W in Kfz/24 h]

Straße	Abschnitt	Variante		derung nüber
		V 1	Analyse	Bezugsfall
		Kfz/24h	Kfz/24h	Kfz/24h
B 441	OD Leese Süd	2.040	+440	+210
B 441	OD Leese West	850	+20	+30
B 215	OD Leese Nord	1.750	+600	+290
	Leese An der Riede	20	0	0
B 441	Süd	510	+40	+20
B 482		1.380	+370	+160
B 215/B 441		850	+20	+30
B 215	Landesbergen Süd	70	-1.070	-1.400
B 215	Landesbergen Nord	0	-1.200	-1.740
B 215	OD Estorf	0	-1.190	-1.760
B 215	nördlich Leeseringen	130	-1.130	-1.150

Tab. 4.9: Variante 1: Veränderung der Querschnittsbelastungen gegenüber der Analyse und dem Bezugsfall **Schwerverkehr** [Lkw/24 h]

Der Neubau der B 215_n mit den Ortsumgehungen und die dadurch resultierende Erhöhung der Reisegeschwindigkeit führt zu einer weiteren Attraktivitätssteigerung der Route B 482 / B 215.

Infolge der Verlegung der B 215 im Abschnitt Landesbergen bis zum Südring in der Stadt Nienburg (Weser) werden die Ortsdurchfahrten vollständig vom Fremdverkehr entlastet.

Gegenüber dem Bezugsfall erhöht sich die Querschnittsbelastung um 800 Kfz/24 h bzw. 400 Fz/24 h im Schwerverkehr.

Ergänzend zur Verlegung der B 215_n wird für eine Ortsumgehung von Leese eine Ost- und eine Westvariante diskutiert.

4.4.3 Variante 2.1: Ostumgehung von Leese

Die Ostumgehung von Leese beginnt im Süden südlich des vorhandenen Kreisverkehrs. Die B 482 wird über den Kreisverkehr in Richtung Osten geführt und an die Ostvariante angebunden. Eine Verknüpfung der Ostvariante mit dem innerörtlichen Straßennetz erfolgt in Höhe der Gemeindestraße "An der Riede". Im Norden bindet die Landesberger Straße (B 215) an die Ostvariante an.

Der südliche Abschnitt der B 215_n wird von 7.700 Kfz/24 h und der nördliche Abschnitt von 7.600 Kfz/24 h befahren.

Straße	Abschnitt	Variante V 2.1		derung nüber
			Analyse	Bezugsfall
		Kfz/24h	Kfz/24h	Kfz/24h
B 441	OD Leese Süd	6.000	-5.100	-6.200
B 215/B 441	OD Leese West	8.400	-100	-200
B 215	OD Leese Nord	3.000	-4.200	-5.700
	Leese An der Riede	600	+200	+200
B 441	Süd	6.200	+300	+400
B 482		6.600	+2.200	+1.000
B 215/B 441		8.400	-300	-300
B 215	Landesbergen Süd	1.300	-5.800	-7.400
B 215	Landesbergen Nord	800	-8.200	-10.300
B 215	OD Estorf	400	-8.800	-11.200
B 215	nördlich Leeseringen	1.300	-7.800	-11.300

Tab. 4.10: Variante 2.1: Veränderung der Querschnittsbelastungen gegenüber der Analyse und dem Bezugsfall – **Gesamtverkehr** [DTV_W in Kfz/24 h]

Die Ortsdurchfahrt von Leese (B 215) wird weiterhin eine Verkehrsbelastung im Südabschnitt von 6.000 Kfz/24 h und im Nordabschnitt von 3.000 Kfz/24 h aufweisen. Somit wird primär der in Nord-Süd-Richtung verlaufende Durchgangsverkehr aus der Ortsdurchfahrt auf die Ostvariant verlagert, während die starken Eckbeziehungen von der B 215/ B 441 aus / in Richtung Westen die innerörtlichen Straßen weiter nutzen.

Der Anschluss Leese-Mitte an die Gemeindestraße "An der Riede" wird vom überörtlichen Verkehr nicht genutzt. Dies liegt an dem Ausbauzustand der Straße und an der vorhandenen Tempo-30-Regelung. Ein Ausbau der Straße ist aufgrund der eng an der Straße stehenden Häuser schwierig umzusetzen. Vor diesem Hintergrund wurde bei den Umlegungsberechnungen keine Attraktivitätserhöhung des Straßenzuges unterstellt. Da für die Verkehre von Westen nach Norden bzw. Süden die Fahrtstrecke über die Ortsdurchfahrt von Leese kürzer als über die Gemeindestraße "An der Riede" / B 215_n ist, würde auch ein Ausbau der Straße "An der Riede" nur einen marginalen Einfluss auf den Verkehrswert des Anschlusses Leese-Mitte haben. Daher wird dieser Anschluss als nicht zielführend eingestuft.

Straße	Abschnitt	Variante V 2.1		derung nüber
			Analyse	Bezugsfall
		Kfz/24h	Kfz/24h	Kfz/24h
B 441	OD Leese Süd	390	-1.210	-1.440
B 215/B 441	OD Leese West	770	-60	-50
B 215	OD Leese Nord	270	-880	-1.190
	Leese An der Riede	140	+120	+120
B 441	Süd	570	+100	+80
B 482		1.490	+480	+270
B 215/B 441		770	-60	-50
B 215	Landesbergen Süd	110	-1.030	-1.360
B 215	Landesbergen Nord	0	-1.200	-1.740
B 215	OD Estorf	0	-1.190	-1.760
B 215	nördlich Leeseringen	130	-1.130	-1.150

Tab. 4.11: Variante 2.1: Veränderung der Querschnittsbelastungen gegenüber der Analyse und dem Bezugsfall **Schwerverkehr** [Lkw/24 h]

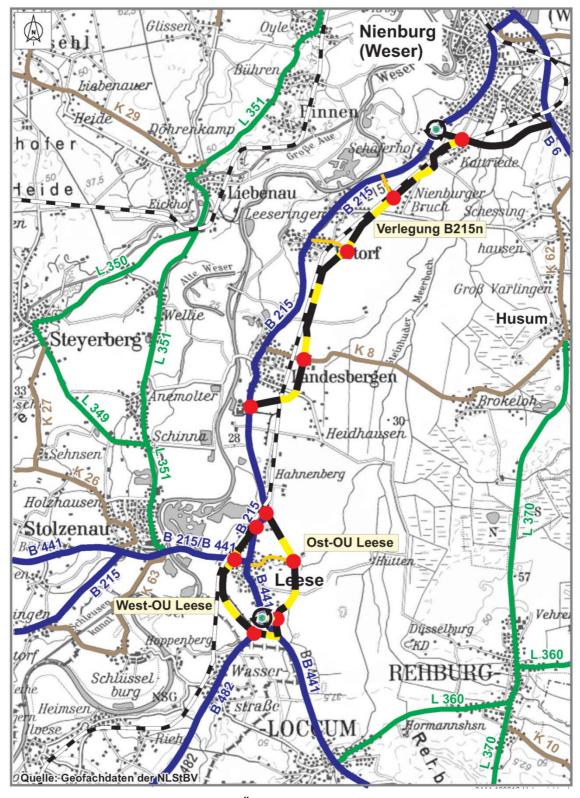


Abb. 4.4: Varianten 2.1 / 2.2 – Übersicht Ortumgehung Leese

4.4.4 Variante 2.2: Westumgehung von Leese

Auch die Westumgehung beginnt südlich des vorhandenen Kreisverkehrs. Die B 482 und die B 215 / B 441 werden mit der Westvariante verknüpft. Die Variante verläuft bahnparallel östlich der Schienen. Im Norden wird die Landesberger Straße (B 215) nachrangig an die Ortsumgehung angebunden.

Straße	Abschnitt	Variante	Veränderung gegenüber	
		P 2.2	Analyse	Bezugsfall
		Kfz/24h	Kfz/24h	Kfz/24h
B 441	OD Leese Süd	2.400	-8.700	-9.800
B 215/B 441	OD Leese West	2.200	-6.300	-6.400
B 215	OD Leese Nord	1.300	-5.900	-7.400
	Leese An der Riede	400	0	0
B 441	Süd	5.600	-300	-200
B 482		7.000	+2.600	+1.400
B 215/B 441		9.300	+600	+600
B 215	Landesbergen Süd	1.500	-5.600	-7.200
B 215	Landesbergen Nord	700	-8.200	-10.400
B 215	OD Estorf	400	-8.800	-11.200
B 215	nördlich Leeseringen	1.300	-7.800	-11.300

Tab. 4.12: Variante 2.2.: Veränderung der Querschnittsbelastungen gegenüber der Analyse und dem Bezugsfall **Gesamtverkehr** [DTV_W in Kfz/24 h]

Infolge der geplanten Verknüpfungen mit dem Bundesstraßennetz werden alle Durchgangsverkehrsströme aus der Ortsdurchfahrt von Leese auf die Umgehung verlagert.

Die Ortsdurchfahrt von Leese weist eine Querschnittsbelastung von maximal 2.400 Kfz/24 auf.

Auch die hohen (über-) regionalen Schwerverkehrsströme werden vollständig auf der Westumgehung gebündelt.

Straße	Abschnitt	Variante	Veränderung gegenüber	
		P 2.2	Analyse	Bezugsfall
		Kfz/24h	Kfz/24h	Kfz/24h
B 441	OD Leese Süd	230	-1.370	-1.600
B 215/B 441	OD Leese West	150	-680	-670
B 215	OD Leese Nord	90	-1.060	-1.370
	Leese An der Riede	20	0	0
B 441	Süd	560	+90	+70
B 482		1.560	+550	+340
B 215/B 441		930	+100	+110
B 215	Landesbergen Süd	90	-1.050	-1.380
B 215	Landesbergen Nord	0	-1.200	-1.740
B 215	OD Estorf	0	-1.190	-1.760
B 215	nördlich Leeseringen	130	-1.130	-1.150

Tab. 4.13: Variante 2.2: Veränderung der Querschnittsbelastungen gegenüber der Analyse und dem Bezugsfall **Schwerverkehr** [Lkw/24 h]

5. Leistungsfähigkeitsberechnung der Knotenpunkte

5.1 Maßgebende stündliche Verkehrsbelastung

Nach dem "Handbuch für die Bemessung von Straßenverkehrsanlagen" (HBS 2001 /1/) ist die sogenannte Bemessungsverkehrsstärke q_B zur Bemessung der Verkehrsanlagen heranzuziehen. Diese Bemessungsverkehrsstärke entspricht der maßgebenden stündlichen Verkehrsstärke msv im Gesamtquerschnitt, die definitorisch die Verkehrsbelastung in der 30. Jahresstunde darstellt. Soweit Dauerzählstellen im übergeordneten Straßennetz vorliegen, kann die Bemessungsverkehrsstärke daraus übernommen werden.

Aus den Ergebnissen der Straßenverkehrszählung 2010 sind die maßgebenden Bemessungsverkehrsstärken (msv-Werte) in der Spitzenstunde bekannt. Für die B 215 werden die Werte für die Zählstelle 458 herangezogen. Die Auswertung der Zählstelle 458 ergibt für den Werktagsverkehr einen Wert für die maßgebende stündliche Verkehrsstärke (MSV) von 999 Kfz/h was einem Anteil von 10,77 % am Gesamtverkehr entspricht.

		Kfz/24 h		Kfz/h	Anteil
Gesamtverkehr	DTV	8.678	MSV	999	11,51%
Werktagsverkehr	DTVw	9.276	MSVw	999	10,77%
Sonntagsverkehr	DTVs	9.753	MSVs	978	10,03%
Urlaubsverkehr	DTVu	4.911	MSVu	544	11,08%

Tab. 5.1: Auswertung der Straßenverkehrszählung 2010

Bei der Analyse wurde in Höhe der SVZ-Zählstelle 458 eine maximale Querschnittsbelastung von 745 Kfz/h ermittelt. Unter Heranziehung des MSVw-Wertes von 999 Kfz/ ist somit eine Erhöhung um 30 % zu berücksichtigen.

5.2 Berechnungsverfahren

Die Beurteilung der Leistungsfähigkeit erfolgt in Abhängigkeit der mittleren Wartezeit ausgedrückt durch die Qualitätsstufen des Verkehrsablaufes (QSV) (vgl. Tab. 5.2).

Dabei werden die Anforderungen des "Handbuches für die Bemessung von Straßenverkehrsanlagen HBS 2001" berücksichtigt. Grundsätzlich ist eine ausreichende Qualität des Verkehrsablaufs an Knotenpunkten zu erreichen, d. h. die QSV muss für alle Ströme mindestens D sein.

0 111111	Mittl	ere Wartezeit w [sec]	
Qualitätsstufen des Verkehrs- ablaufes (QSV)	ohne Signalanlage	mit Signalanlage	mit Signalanlage	
	Kfz	Kfz	Fußgänger	
Α	< 10	< 20	< 15	0
В	< 20	< 35	< 20	0
С	< 30	< 50	< 25	0
D	< 45	< 70	< 30	
E	> 45	< 100	< 35	
F		> 100	> 35	

Tab. 5.2: Qualitätsstufen des Verkehrsablaufs (Quelle: HBS 2001)

Für die Berechnungen zur Leistungsfähigkeit sind die spitzenstündlichen Verkehrsmengen heranzuziehen. Für die Ermittlung der Leistungsfähigkeit werden die vorhandenen Verkehrsbelastungen unter Berücksichtigung der analysierten Schwerverkehre in Pkw-Einheiten pro Stunde umgerechnet. Bei der Umrechnung der Kfz in Pkw-E werden bei **nichtsignalisierten**

Knotenpunkten

Lkw mit dem Faktor 1,5 bzw. Lastzüge mit dem Faktor 2,0 und bei **signalisierten Knotenpunkten**Lkw mit dem Faktor 2,0 bzw. Lastzüge mit dem Faktor 2,5 multipliziert.

Gemäß RAL /3/ ist die Verknüpfung einer EKL-3-Straße mit einer EKL-2-Straße als teilplangleicher Knotenpunkt mit Signalregelung (vgl. /3/ Tabelle 22) zu gestalten. Die Linksabbieger sind dabei immer gesichert zu führen. Die RAL sagt aus, dass für Rechtsabbieger von der EKL-2-Straße im Regelfall ein Rechtsabbiegefahrstreifen anzuordnen ist und auf diesen nur in Ausnahmefällen verzichtet werden kann. Bei den durchgeführten Leistungsfähigkeitsberechnungen wird in den meisten Fällen auf einen Rechtsabbiegefahrstreifen verzichtet.

Die Verknüpfung von zwei EKL-2-Straßen ist als teilplanfreier oder als teilplangleicher Knotenpunkt zu planen (vgl. /3/ Tabelle 21). Gewählt wurde ein teilplangleicher Knotenpunkt

Bei den Leistungsfähigkeitsberechnungen für die signalisierten Knotenpunkte wurde eine einheitliche Umlaufzeit von t_u = 90 sec gewählt. Die detaillierten Berechnungsergebnisse sind dem Anhang zu entnehmen.

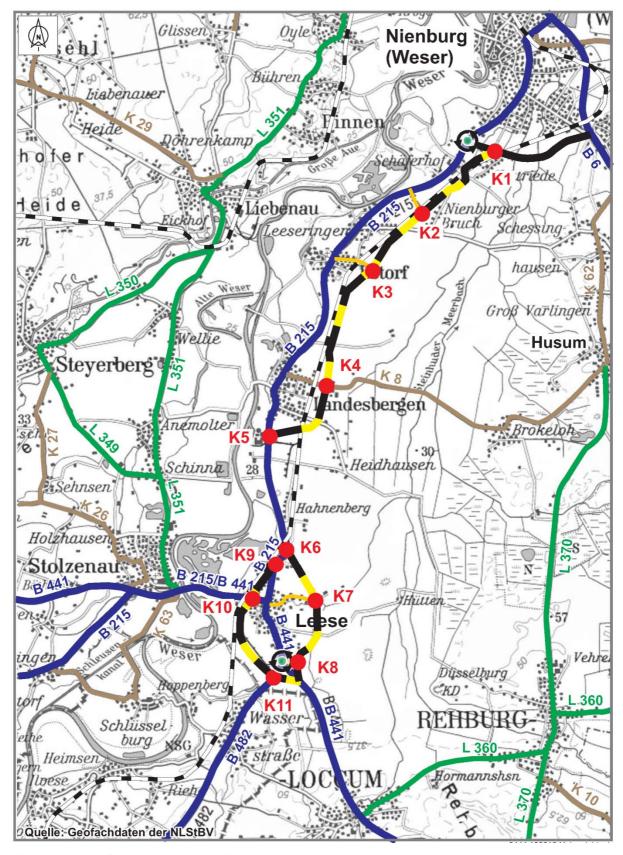


Abb. 5.1: Bezeichnung der Knotenpunkte

B 215n

Knotenpunktbezeichnung	К1	
Verknüpfung	Südring Nienburg	B 215 _n
Knotenpunktart	plangleich	signalisiert
Ausbauform Hauptrichtung	separater Linksabbieger	separater Rechtsabbieger
Ausbauform Nebenrichtung	separater Linksabbieger	separater Linksabbieger
Qualität des Verkehrsablaufes	morgens: C	nachmittags: D

Knotenpunktbezeichnung	K 2	
Verknüpfung	GE Leeseringen	B 215 _n
Knotenpunktart	teilplangleich	signalisiert
Ausbauform Hauptrichtung	separater Linksabbieger	separater Rechtsabbieger
Ausbauform Nebenrichtung	separater Linksabbieger	separater Rechtsabbieger
Qualität des Verkehrsablaufes	morgens: C	nachmittags: C

Knotenpunktbezeichnung	К 3	
Verknüpfung	Esdorf	B 215 _n
Knotenpunktart	plangleich	signalisiert
Ausbauform Hauptrichtung	separater Linksabbieger	
Ausbauform Nebenrichtung	gemeinsamer Fahrstreifen	
Qualität des Verkehrsablaufes	morgens: D	nachmittags: C

Knotenpunktbezeichnung	K 4	
Verknüpfung	Landesbergen Mitte	B 215 _n
Knotenpunktart	teilplangleich	
Regelung Hauptrichtung	signalisiert	
Regelung Nebenrichtung	Kreisverkehrsplatz	
Ausbauform Hauptrichtung	separater Linksabbieger	separater Rechtsabbieger
Ausbauform Nebenrichtung	gemeinsamer Fahrstreifen	
Qualität des Verkehrsablaufes	morgens: C / A	nachmittags: D / A

Knotenpunktbezeichnung	K 5	
Verknüpfung	Landesbergen Süd	B 215 _n
Knotenpunktart	plangleich	signalisiert
Ausbauform Hauptrichtung	separater Linksabbieger	
Ausbauform Nebenrichtung	gemeinsamer Fahrstreifen	
Qualität des Verkehrsablaufes	morgens: C	nachmittags: C

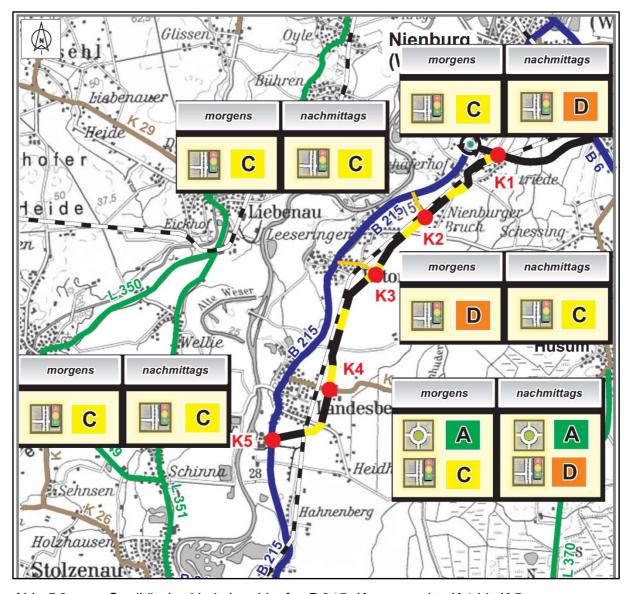


Abb. 5.2: Qualität des Verkehrsablaufes B 215_n Knotenpunkte K 1 bis K 5

Ostumgehung Leese

Knotenpunktbezeichnung	K 6 (OU Leese Ost)	
Verknüpfung	Leese Nord	B 215 _n
Knotenpunktart	plangleich	Signalisiert
Ausbauform Hauptrichtung	separater Linksabbieger	
Ausbauform Nebenrichtung	gemeinsamer Fahrstreifen	
Qualität des Verkehrsablaufes	morgens: C	nachmittags: D

Knotenpunktbezeichnung	K 7 (OU Leese Ost)	
Verknüpfung	Leese Mitte	B 215 _n
Knotenpunktart	plangleich	signalisiert
Ausbauform Hauptrichtung	separater Linksabbieger	
Ausbauform Nebenrichtung	gemeinsamer Fahrstreifen	
Qualität des Verkehrsablaufes	morgens: C	nachmittags: C

Knotenpunktbezeichnung	K 8 (OU Leese Ost)	
Verknüpfung	Leese Süd	B 215 _n
Knotenpunktart	plangleich	signalisiert
Ausbauform Hauptrichtung	separater Linksabbieger	separater Rechtsabbieger
Ausbauform Nebenrichtung	separater Linksabbieger	separater Linksabbieger
Qualität des Verkehrsablaufes	morgens: C	nachmittags: D

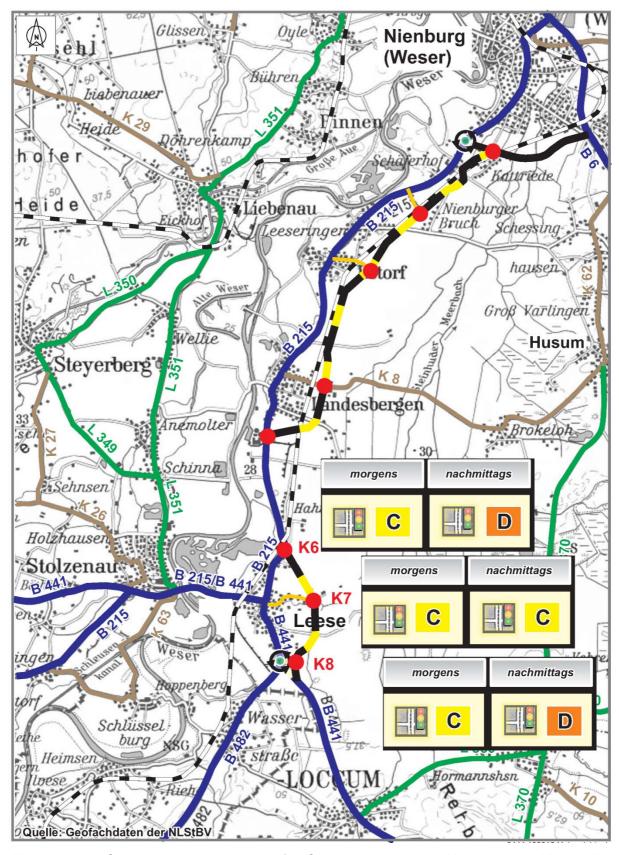


Abb. 5.3: Qualität des Verkehrsablaufes Ostumgehung Leese Knotenpunkte K 6 bis K 8

Westumgehung Leese

Knotenpunktbezeichnung	K 9 (OU Leese West)		
Verknüpfung	Leese Nord	B 215 _n	
Knotenpunktart	plangleich	signalisiert	
Ausbauform Hauptrichtung	separater Linksabbieger		
Ausbauform Nebenrichtung	gemeinsamer Fahrstreifen		
Qualität des Verkehrsablaufes	morgens: C	nachmittags: C	

Knotenpunktbezeichnung	K 10 (OU Leese West)			
Verknüpfung	Leese Mitte	B 215 _n		
Knotenpunktart	teilplangleich			
Regelung Hauptrichtung	signalisiert			
Regelung Nebenrichtung	Kreisverkehrsplatz			
Ausbauform Hauptrichtung	separater Linksabbieger	separater Rechtsabbieger		
Ausbauform Nebenrichtung	separater Linksabbieger	separater Rechtsabbieger		
Qualität des Verkehrsablaufes	morgens: C / A	nachmittags: C / A		

Knotenpunktbezeichnung	K 11 (OU Leese West)	11 (OU Leese West)		
Verknüpfung	Leese Süd	B 215 _n		
Knotenpunktart	teilplangleich			
Regelung Hauptrichtung	signalisiert			
Regelung Nebenrichtung	Kreisverkehrsplatz			
Ausbauform Hauptrichtung	separater Linksabbieger	separater Rechtsabbieger		
Ausbauform Nebenrichtung	separater Linksabbieger	separater Rechtsabbieger		
Qualität des Verkehrsablaufes	morgens: C / A	nachmittags: C / A		

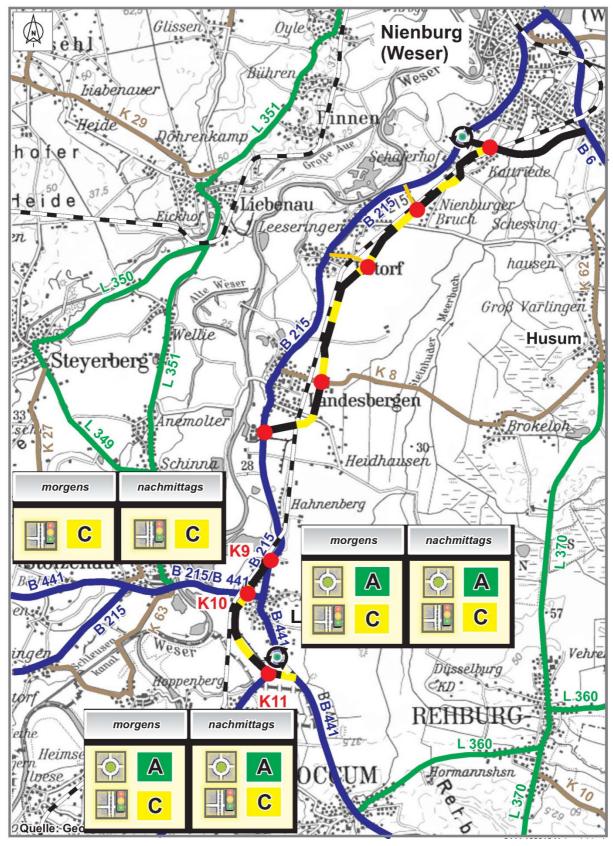


Abb. 5.4: Qualität des Verkehrsablaufes Westumgehung Leese Knotenpunkte K 9 bis K 11

6. Verkehrliche Kennwerte für die Lärmberechnung

Für die akustische Bewertung der Neubaumaßnahme sind die verkehrlichen Kennwerte im Tagesbeurteilungszeitraum (6.00 – 22.00 Uhr) und im Nachtbeurteilungszeitraum (22.00 bis 6.00 Uhr) differenziert nach dem Gesamtverkehrs- und dem Schwerverkehrsanteil heranzuziehen. Für die tageszeitliche Verteilung der Analyseverkehre sind dabei die spezifischen Randbedingungen maßgebend. Dazu gehören insbesondere die Einflüsse durch den Berufsverkehr und durch den Einkaufsverkehr.

Die Angaben der verkehrlichen Kennwerte erfolgen für die einzelnen Streckenabschnitte, wobei folgende verkehrlichen Kennwerte ausgewertet wurden:

- DTV_w Gesamtverkehr (als Mittelwert über **alle Werktage** des Jahres)
- DTV Gesamtverkehr (als Mittelwert über alle Tage des Jahres)
- M_t: maßgebende stündliche Verkehrsbelastung im Tagesbeurteilungszeitraum (in Kfz/h)
- P_t: Lkw-Anteil (Lkw > 2,8 t) im Tagesbeurteilungszeitraum (in %)
- M_n: maßgebende stündliche Verkehrsbelastung im Nachtbeurteilungszeitraum (in Kfz/h)
- P_n: Lkw-Anteil (Lkw > 2,8 t) im Nachtbeurteilungszeitraum (in %)

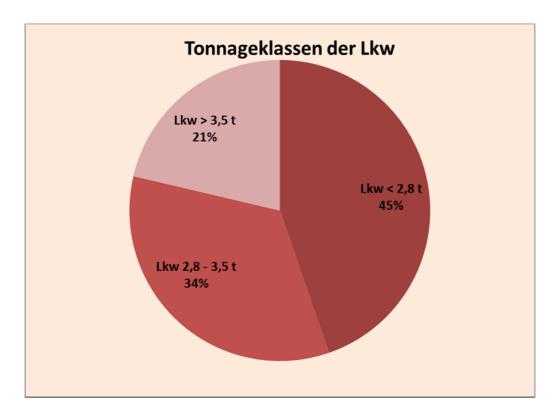


Abb. 6.1: Tonnageklassen der Lkw (Stand 2012) (Quelle: /15/)

Die Umrechnung der DTV_w -Werte auf DTV-Werte erfolgt gemäß dem HBS 2001/2005 /1/. Infolge der EU-Harmonisierung wurde im Jahr 1995 die Abgrenzung der Fahrzeuge bezüglich

des zulässigen Gesamtgewichtes (zul. GG) für Lkw von 2,8 auf 3,5 t angehoben. Daher werden bei den Erhebungen der Schwerverkehr (SV) als Fahrzeuge > 3,5 t definiert. In den Berechnungen nach der RLS 90 /14/ sind beim Lkw-Verkehr jedoch Fahrzeuge ab 2,8 t zu berücksichtigen

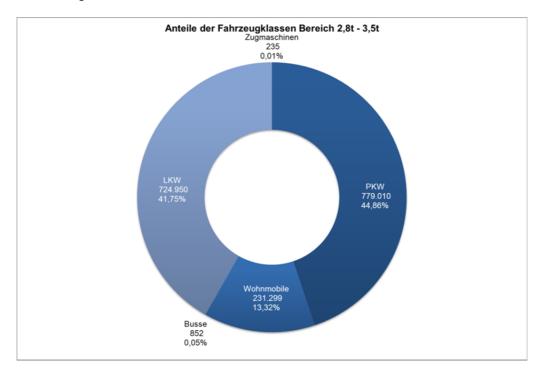


Abb. 6.2: Anteil der Fahrzeugklassen mit einer Gesamttonnage von 2,8 t bis 3,5 t (Stand 2012) (Quelle: /15/)

Anteil der Fahrzeuge von 2,8 bis 3,5 t an allen Fahrzeugen (Stand: 2012)

$$Kfz_{2,8-3,5t} = (Pkw_{2,8-3,5t} + Lkw_{2,8-3,5t}) / (Pkw_{gesamt} + Lkw_{gesamt})$$

= (1.118.474 + 858.752) / (42.927.647 + 2.528.656)
= 4,35 %

Aus der Abbildung 6.2 wird deutlich, dass bei den Fahrzeugen mit einem zul. Gesamtgewicht von 2,8 bis 3,5 t die Pkw einschließlich der Wohnmobile, die als Personenkraftwagen zählen, überwiegen. Nach der Grundklassifizierung der Bundesanstalt für Straßenwesen (BASt) werden als Lieferwagen die Güterfahrzeuge und Wohnmobile mit einem zul. Gesamtgewicht von max. 3,5 t definiert.

Der Anteil der Lkw_{2,8-3,5 t} ergibt sich somit:

$$Lkw_{2,8-3,5\,t} = (Wohnmobile_{2,8-3,5\,t} + Lkw_{2,8-3,5\,t}) / (Pkw_{gesamt} + Lkw_{gesamt})$$

$$= (240.078 + 858.752) / (42.927.647 + 2.528.656)$$

$$= 2,42 \%$$

Da bei den Lärmberechnungen lediglich Lkw > 2,8 t zu berücksichtigen sind, ist dieser Anteil bei der Ermittlung anzusetzen:

$$\begin{aligned} \text{Lkw}_{>\,2,8\,t} &= \text{SV}_{>\,3,5\,t} + \text{DTV}_{\text{Kfz}} * 0,0242 \\ \text{mit} \\ \text{DTV}_{\text{Kfz}} &= \text{Gesamtverkehrsstärke} \; [\text{Kfz/24 h}] \\ \text{SV}_{>\,3,5\,t} &= \text{Schwerverkehrsstärke} > 3,5\,t \; [\text{Fz/24 h}] \end{aligned}$$

Die Lage der Abschnitte kann der Abbildung 6.3 entnommen werden.

Nr	Abschnitt	M _t	p _t	M _n	p _n
		Kfz/h	%	Kfz/h	%
1	B 215	734	19,02%	106	29,77%
2	B 215	731	17,28%	104	27,24%
3	B 215	676	18,28%	97	28,71%
4	B 215	477	20,23%	69	31,49%
11	OU Leese West	494	19,25%	71	30,10%
12	OU Leese West	588	18,40%	79	24,41%
21	OU Leese Ost	402	21,41%	59	33,14%
22	OU Leese Ost	406	22,78%	60	35,01%

Tab. 6.1: Maßgebende Verkehrsstärke M und maßgebende Lkw-Anteile p entsprechend RLS-90 /14/ – Prognose 2025

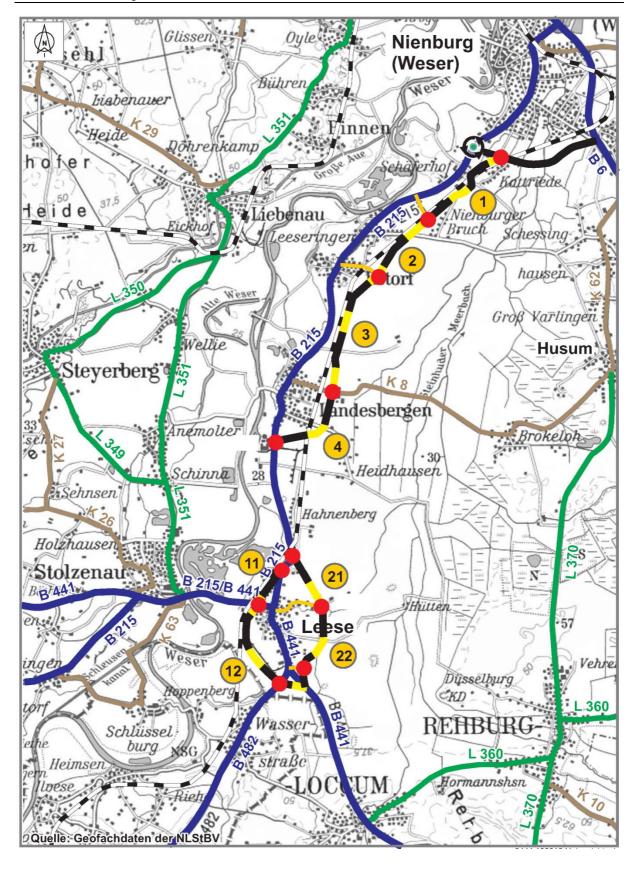


Abb. 6.3: Abschnittsnummerierung für die verkehrlichen Kennwerte

Die Lage der Abschnitte des Bezugsfalls kann der Abbildung 6.4 entnommen werden.

Nr	Abschnitt	M _t	p _t	M _n	p _n
		Kfz/h	%	Kfz/h	%
31	B 215	672	17,16%	95	27,05%
32	B 215	621	15,29%	87	24,26%
33	B 215	594	15,73%	83	24,93%
34	B 215	465	16,80%	66	26,53%
35	B 215	476	16,37%	67	25,88%
36	B 441	656	15,40%	87	20,53%
37	B 215/ B 441	471	10,34%	63	16,40%

Tab. 6.2: Maßgebende Verkehrsstärke M und maßgebende Lkw-Anteile p entsprechend RLS-90 /14/ – Prognose 2025

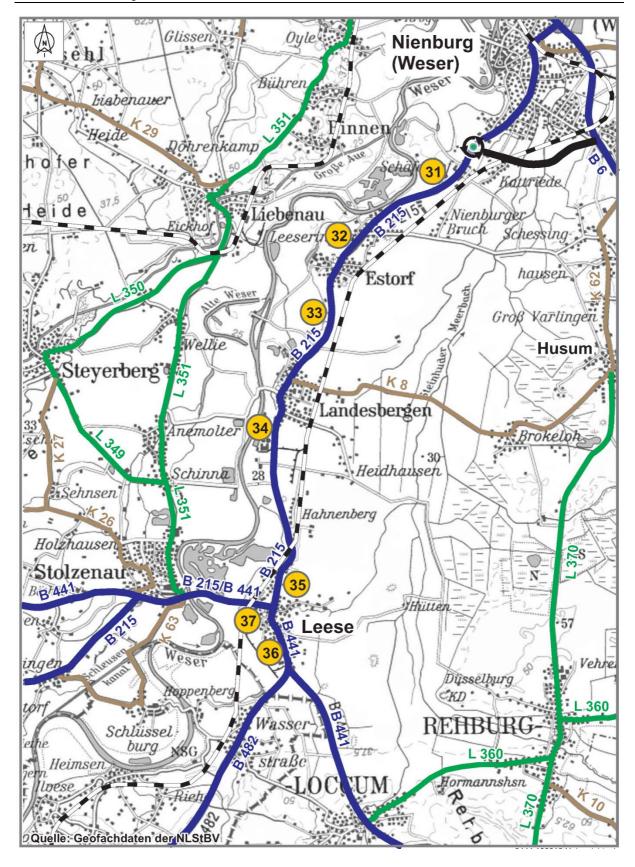


Abb. 6.4: Abschnittsnummerierung für die verkehrlichen Kennwerte Bezugsfall

7. Zusammenfassung

Aufgabenstellung

Die Samtgemeinde Mittelweser und die Stadt Nienburg (Weser) planen ein Logistik- und Industriezentrum in der Gemeinde Estorf. Die Lage an der B 215 ist als attraktiver Standort zu bezeichnen.

Im Bedarfsplan der Bundesfernstraßen sind im Zuge der B 215 die Ortsumgehung Landesbergen im "weiteren Bedarf" und die Ortsumgehung Leese im Zuge der B 215 / B 441 im "weiteren Bedarf mit besonderem naturschutzfachlichem Planungsauftrag" enthalten. Vor diesem Hintergrund soll, basierend auf einer Aktualisierung der Verkehrsdaten und unter Zugrundelegung der Prognoseverkehrsmengen, infolge der Ansiedlung des Logistik- und Industriezentrums sowie der Gewerbegebiete entlang des geplanten Südrings in der Stadt Nienburg (Weser) die verkehrliche Wirksamkeit der Ortsumgehungen im Zuge der B 215 bzw. B 441 untersucht werden.

Untersuchungsumfang

Für das relevante Straßennetz lagen Ergebnisse von Verkehrszählungen aus verschiedenen Jahren vor, so z.B. von der Straßenverkehrszählung 2010. Zur Ergänzung dieser Datenbasis wurden mehrtägige Erhebungen mittels Seitenradargeräten durchgeführt. Darüber hinaus wurden die Knotenströme an den Knotenpunkten der B 215 / B 441 bzw. B 482 / B 441 in Leese erhoben.

Zur Bestimmung der Verkehrsrelationen wurden auf allen auf Leese zuführenden Bundesstraßen Verkehrsbefragungen durchgeführt.

Ergebnisse der Verkehrszählung

Die B 215 wird im Abschnitt zwischen Leese und Nienburg im Analysejahr 2013 abschnittsweise von 7.100 Kfz/24 h bis 9.100 Kfz/24 h südlich von Nienburg befahren.

Die Bundesstraße südlich von Leese (B 441) weist eine Querschnittsbelastung von 5.800 Kfz/24 h und die B 482 von 4.300 Kfz/24 h auf.

Das Bundesstraßennetz ist durch hohe Lkw-Verkehrsmengen geprägt. Im Abschnitt zwischen Leese und Nienburg beträgt die Querschnittsbelastung im Lkw-Verkehr zwischen 1.230 und 1.470 Lkw/24 h.

Vor allem die B 482 weist mit rd. 1.000 Lkw/24 h einen Lkw-Anteil von knapp 25 % auf.

Ergebnisse der Verkehrsbefragungen

Die Verkehrsbeziehungen im Untersuchungsraum sind in starkem Maße durch regionale Verkehre zwischen den Städten und Gemeinden Rehburg-Loccum / Samtgemeinde Stolzenau, Landesbergen und Nienburg (Weser) geprägt.

Die Ortsdurchfahrten von Leese weisen sehr hohe Durchgangsverkehrsbeziehungen auf. Dabei dominieren sowohl die Süd-West-Richtung, als auch die Nord-Süd- und die Nord-West-Richtung.

Verkehrsprognose

Für die Verkehrsuntersuchung wurde entsprechend der Shell-Prognose aus dem Jahre 2009 keine allgemeine Verkehrszunahme berücksichtigt.

Strukturelle Entwicklungen wurden für das Interkommunale Gewerbegebiet Nienburg-Süd / Leeseringen, in dem eine KV-Anlage geplant ist, sowie die Gewerbegebiete entlang des Südrings in der Stadt Nienburg (Weser) berücksichtigt.

Für das Interkommunale Gewerbegebiet-Süd / Leeseringen liegen Potenzialstudien für die Umschlagspotenziale der KV-Anlage vor. Unter Zugrundelegung der deutschlandweiten Verkehrsverflechtungen ist eine maximale Umschlagskapazität von 80.000 TEU für eine KV-Anlage an der Weser abzuleiten. Zurzeit wird das Potenzial für eine KV-Anlage aufgrund von Betriebsbefragungen im Rahmen der Potenzialstudie als eher gering angesehen. Aufgrund dieser Umschlagskapazität resultieren 220 Lkw-Fahrten pro Tag für die Anlage.

Für die Gewerbegebietserweiterung in Nienburg-Süd / Leeseringen wurde das Verkehrsaufkommen über die Anzahl der Arbeitsplätze bezüglich des Beschäftigtenverkehrs und des Kundenverkehrs abgeleitet. Darüber hinaus wurde aufgrund einschlägiger Modellansätze das Güter- und Schwerverkehrsaufkommen ermittelt. Danach ist mit rd. 3.200 Kfz/24 h als Summe beider Richtungen für das Gewerbegebiet zu rechnen.

Für die B-Plangebiete Nr. 101 "Südring Nienburg (Weser)" wurde ein Gesamtverkehrsaufkommen von 960 Kfz/24 h ermittelt.

Unter Zugrundelegung von nutzungsspezifischen Tagesganglinien wurde die tageszeitliche Verteilung der Neuverkehre der Gewerbegebiete berechnet.

Wirkungsberechnungen der Straßenplanungen

Bei dem sog. Prognose-Null-Fall wird ausschließlich die Realisierung der Straßenneubaumaßnahmen des vordringlichen Bedarfes des Bundesverkehrswegeplanes berücksichtigt. Die Verkehrsnachfrage orientiert sich dabei an den deutschlandweiten Verkehrsverflechtungen. Dabei zeigt sich, dass insbesondere die Nord-Süd-Achse über die B 215 / B 482 einen starken Zuwachs am Gesamtverkehr aufweisen wird. Unter Zugrundelegung der deutschlandweiten Verkehrsverflechtungen wird die Zunahme bei rd. 1.000 bis 1.200 Kfz/24 h liegen.

Beim sog. Bezugsnullfall wird die Verkehrsentwicklung, die im Rahmen der Verkehrsprognose berechnet wurde und der geplante Südring berücksichtigt. Die Zunahmen treten in starkem Maße im nördlichen Bereich des Untersuchungsgebietes auf, da die strukturellen Veränderungen mit den Gewerbegebieten Nienburg-Süd / Leeseringen als auch die B-Plangebiete entlang des geplanten Südringes eher lokale Auswirkungen haben.

Bei den Straßennetzvarianten wurden zunächst die Ortsumgehung im Zuge der B 215 im Abschnitt zwischen Landesbergen und Nienburg (Süd) einschließlich des Südringes der Stadt Nienburg (Weser) berechnet. Durch diese Maßnahmen wird die vorhandene Bundesstraße B 215 nahezu vollständig entlastet. Lediglich die ortsinternen Verkehre werden über das derzeitige Bestandsnetz abgewickelt. Die Neubauplanung weist Querschnittsbelastungen im Süden von 8.500 und im Norden von 13.400 Kfz/24 h aus. Gleichzeitig werden die derzeitigen Ortsdurchfahrten um rd. 10.000 Fahrten entlastet.

Ergänzend wurde eine Ortsumgehung von Leese alternativ in einer West- und einer Ostlage untersucht. Bei der Ostvariante wird eine Querschnittsbelastung von rd. 7.600 Kfz/24 h erreicht. Dennoch verbleibt im Innerortsbereich von Leese ein erheblicher Anteil an Durchgangsverkehrsfahrten, da die Durchgangsverkehrsrelationen von Süd nach West und von West nach Nord nicht auf die Ortsumgehung gelenkt werden können. Bei den Untersuchungen wurde neben einem Süd- und einem Nordanschluss der Ortsumgehung an das Bestandsstraßennetz auch ein Anschluss über die Straße "An der Riede" berücksichtigt. Diese sehr enge Straßenführung ist nicht geeignet, (über-)regionale Verkehre aufzunehmen. Daher wird empfohlen, diese Anbindung nicht weiter in die Betrachtungen einzubeziehen.

Die Westumgehung von Leese weist Querschnittsbelastungen von 11.000 Kfz/24 h im südlichen Abschnitt und 9.300 Kfz/24 h im nördlichen Abschnitt auf. Durch diese Straßenneubaumaßnahme wird eine vollständige Entlastung der Ortsdurchfahrten vom Durchgangsverkehr erreicht, da alle relevanten Durchgangsverkehrsbeziehungen über die Westumgehung geleitet werden können.

Leistungsfähigkeit der Knotenpunkte

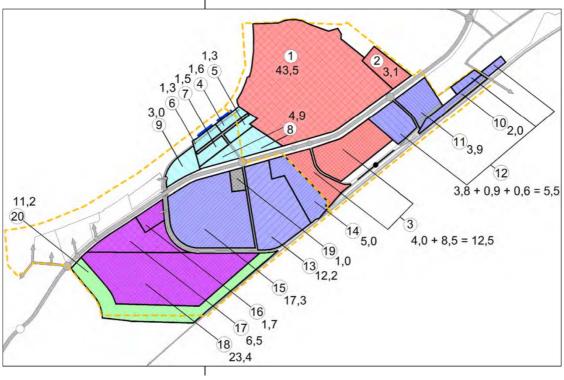
Unter Berücksichtigung der Prognoseverkehrsströme wurden die Leistungsfähigkeiten für die Straßenneubaumaßnahmen für alle relevanten Knotenpunkte ermittelt. Unter Zugrundelegung der in den gültigen Richtlinien vorzusehenden Knotenpunktformen sind für die verkehrlichen Spitzenstunden zumindest ausreichende Verkehrsqualitäten erreichbar. I.d.R. wird sich eine gute bzw. befriedigende Verkehrsqualität einstellen.

Resümee

Die Verkehrsuntersuchung belegt, dass das Bundesstraßennetz südlich der Stadt Nienburg (Weser) bis nach Leese / Stolzenau durch hohe Querschnittsbelastungen und sehr hohe Lkw-Anteile charakterisiert wird. Insbesondere die Verkehrsrelation in den ostwestfälischen Raum ist aufgrund der geringen Alternativen für den Schwerverkehr sehr attraktiv.

Die Ortsdurchfahrten weisen in längeren Abschnitten sehr enge Straßenräume mit häufig unzureichenden Anlagen für den Fußgänger- und Radverkehr auf. Daher ist bereits aufgrund der derzeitigen Situation eine Verbesserung der Verkehrssituation zu empfehlen.

Unter Berücksichtigung der deutschlandweiten Verkehrsverflechtungen für das Prognosejahr 2025 und den strukturellen Entwicklungen durch das Interkommunale Gewerbegebiet Leeseringen / Nienburg-Süd und die Gewerbegebiete der Stadt Nienburg (Weser) entlang des Südringes erhöht sich der Verkehrswert der Straßenneubaumaßnahmen. Wird die Verlegung der B 215 im Abschnitt zwischen Landesbergen und Nienburg (Weser) realisiert, so wird das Bestandsnetz vollständig vom Fremdverkehr entlastet. Die verbleibenden Verkehrsbeziehungen sind ausschließlich dem Binnen- bzw. dem zwischengemeindlichen Verkehr zuzuordnen.

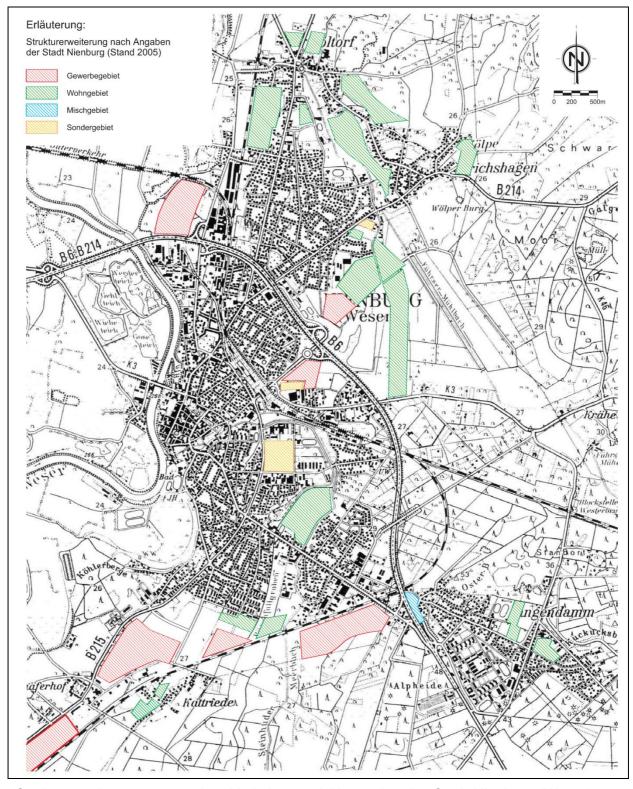

Die starken Durchgangsverkehrsbeziehungen in der Gemeinde Leese sind durch eine Westumgehung vollständig zu verlagern, so dass die Ortsdurchfahrten von Fremdverkehr entlastet werden. Bei einer Ostumgehung würden starke Verkehrsbeziehungen von Süden in Richtung Westen als auch von Westen in Richtung Norden weiterhin im Zuge der Ortsdurchfahrten verbleiben.

Aus gutachterlicher Sicht werden als Maßnahmen zur Aufnahme in den Bundesverkehrswegeplan die Verlegung der B 215 im Abschnitt zwischen Landesbergen und dem Südring von Nienburg (Weser) sowie die Westumgehung von Leese empfohlen.

ANHANG

Anhang A: Flächenaufteilung Logistik- und Industriezentrum

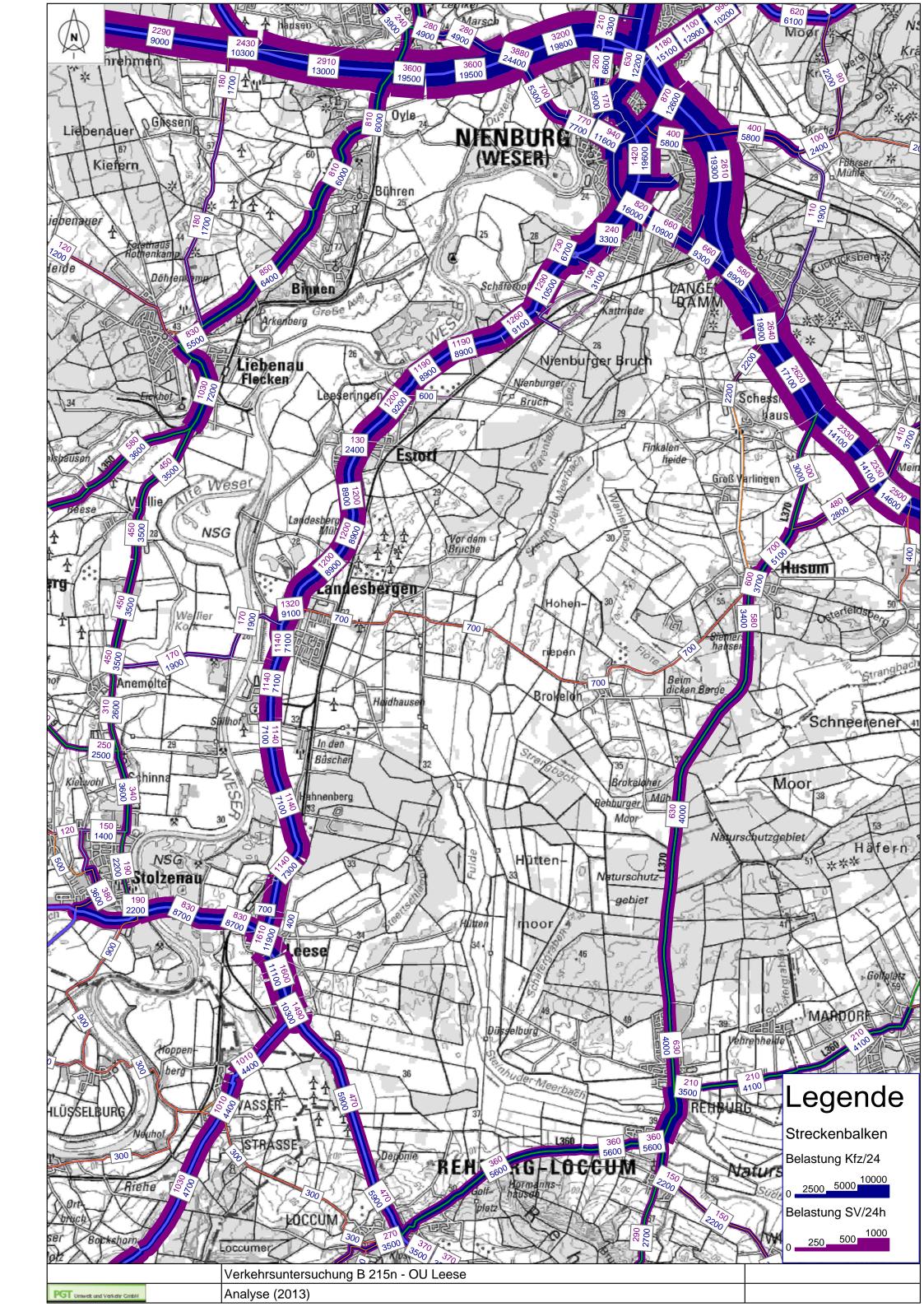
Übersicht Flächengrößen			Größe [in ha]
	1	Tanklager-Nord	43,5
Tanklanan	2	Ergänzung Tanklager	3,1
Tanklager	3	Tanklager Süd (verbleibende Nutzung)	12,5
		Summe	59,1
	4	BA I + Erschließung	1,6
	5	BA la	1,3
Umschlaganlage	6	BA II	1,3
	7	BA IIa	1,5
		Summe	5,7
	8	Teilfläche 1 + 2	4,9
Logistikaffine Industrie- und Gewerbefläche	9	Teilfläche 3	3,0
industrie- drid Gewerberlache		Summe	7,9
	10	Teilfläche 1	2,0
Spaditionsharaich	11	Teilfläche 2	3,9
Speditionsbereich	12	Teilfläche 3	5,5
		Summe	11,4
	13	Bestand Bremskerl	12,2
	14	Erweiterung Bremskerl 1	5,0
	15	Erweiterung Bremskerl 2	17,3
to dead on the selection	16	Erweiterung Glasrecycling	1,7
Industriegebiet Leeseringen	17	Ehemalige Biofilteranlage	6,5
Leeseningen	18	FNP-GE-Fläche Leeseringen	23,4
	19	LKW-Hof	1,0
	20	A+E-Fläche (teilweise Bestand)	11,2
		Summe	78,3

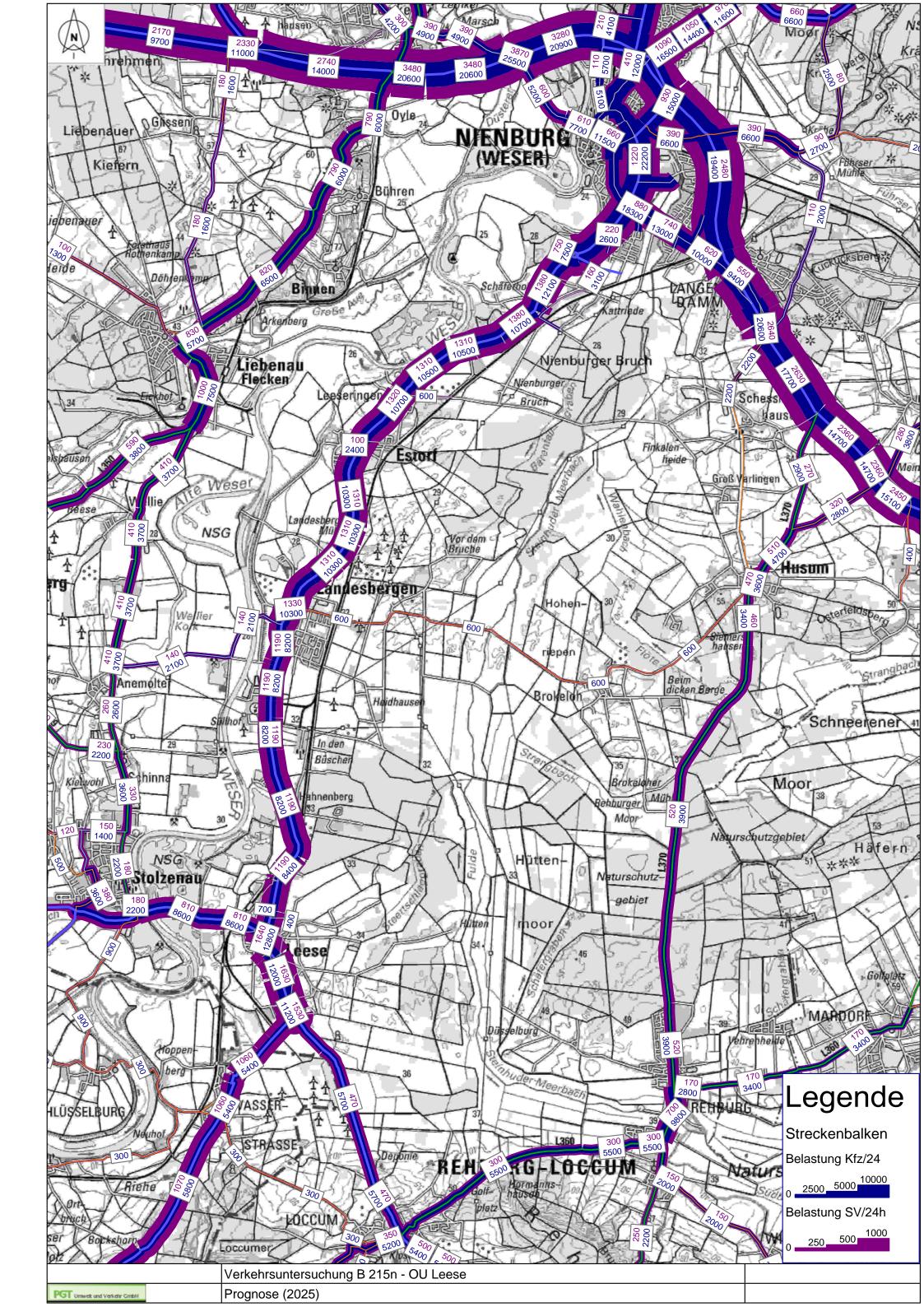


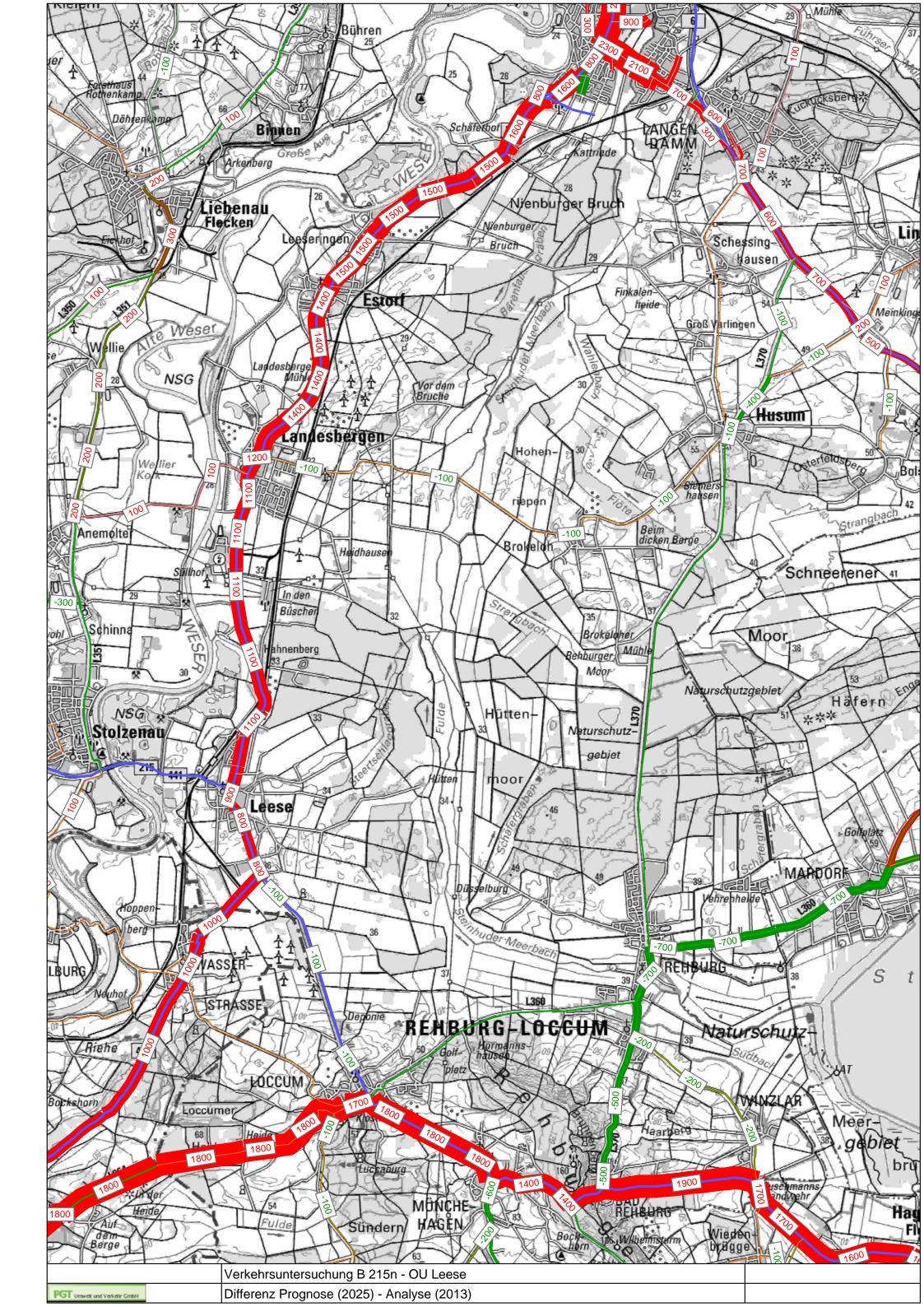
Flächenaufteilung (Variante A) für das Logistik- und Industriezentrum Nienburg-Süd / Leeseringen /9/

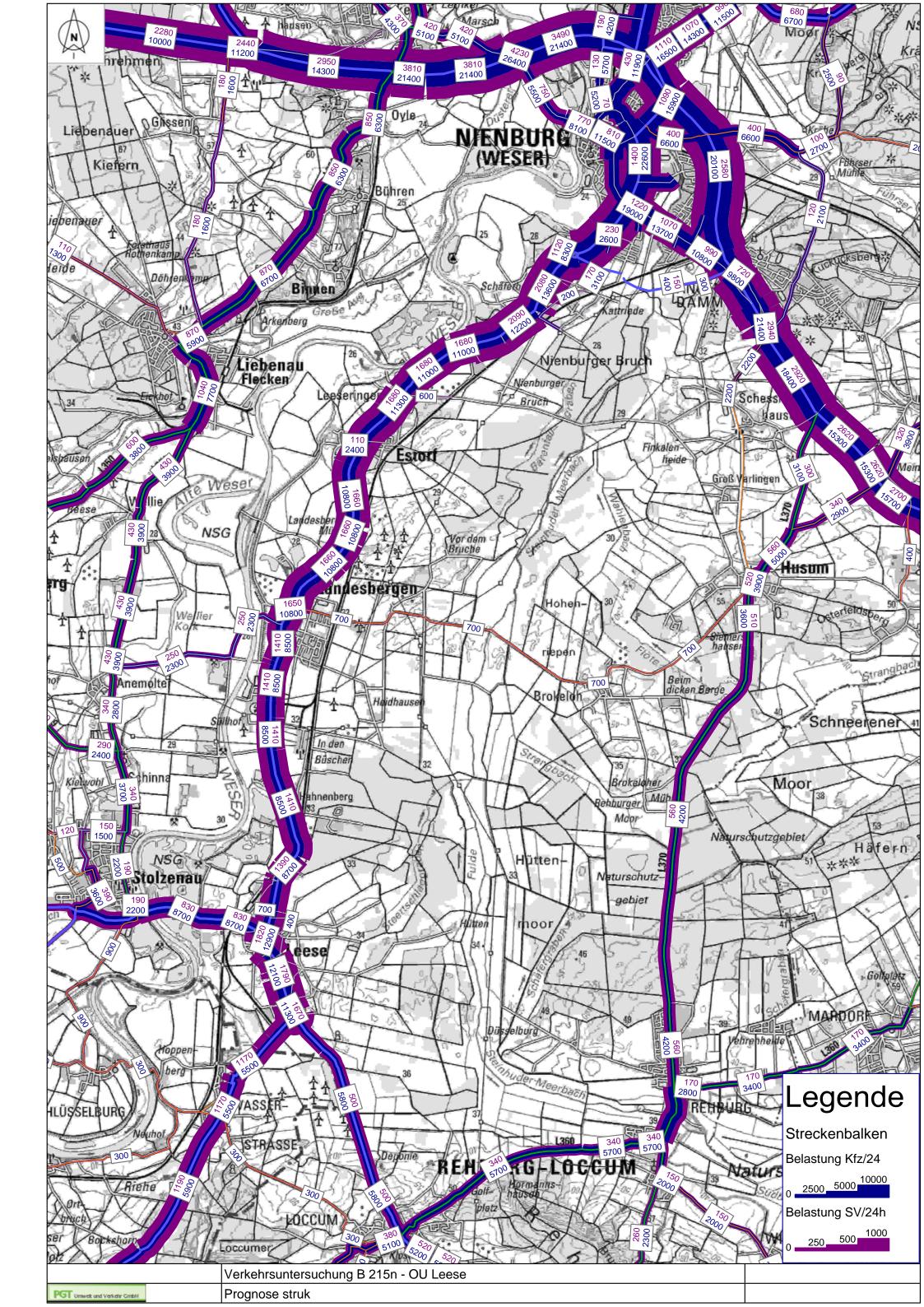
Anhang B: Tabellen Verkehrserzeugung

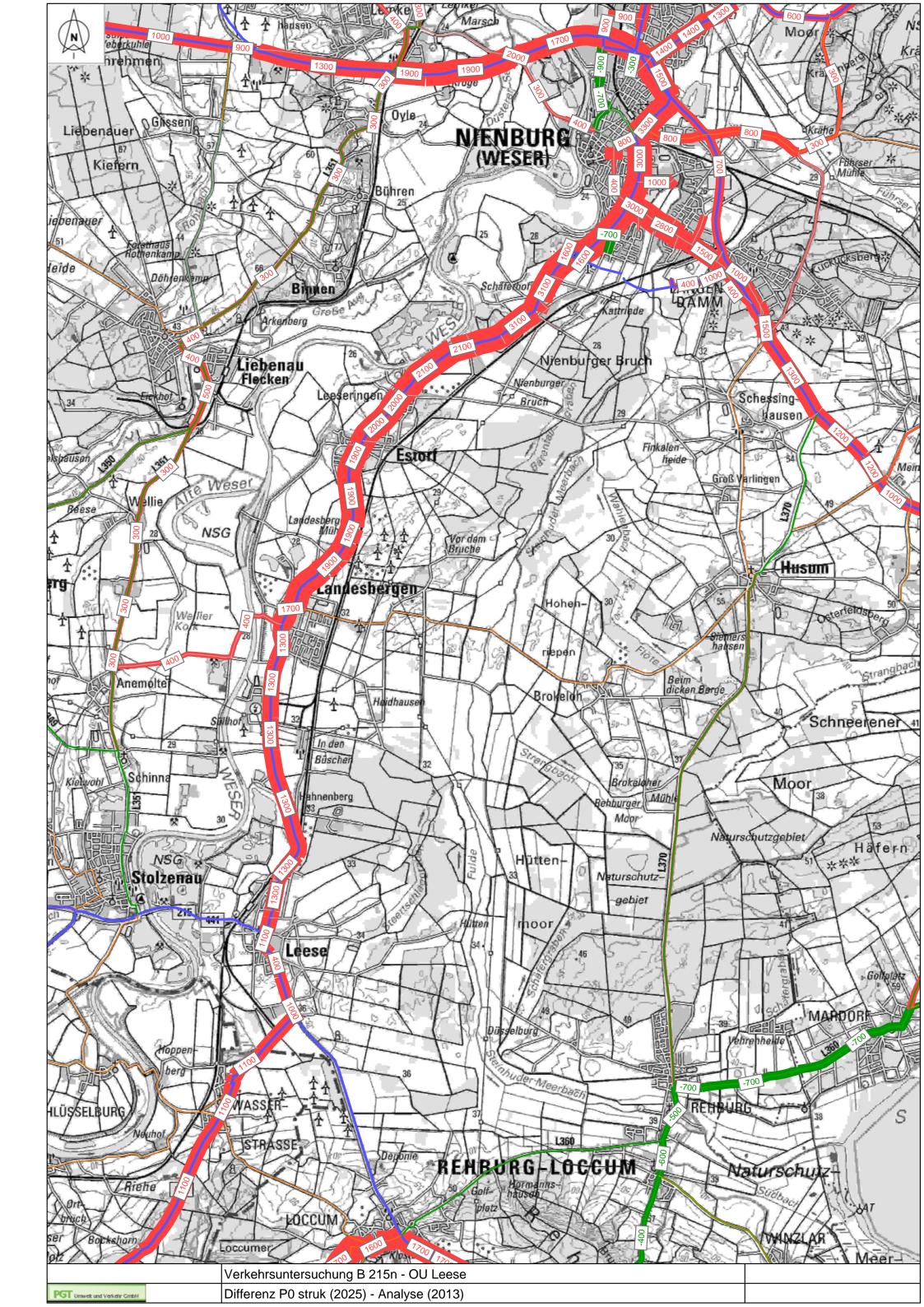
Gewerbegebiet		Logiotik	Chadition	KV-	OF Fra	CE Südeina
Ocwerbegebiet		Logistik	Spedition	Anlage	GE Erg.	GE Südring
Notted 2 also	h a	0.00	0.40	5.40	25.00	45.04
Nettofläche	ha	6,32	9,12	5,13	35,00	15,91
Beschäftigte je ha	Pers./ha	35	25	15	20	25
Summe Beschäftigte	Pers.	220	230	75	700	400
Beschäftigtenverkehr						
Wege je Beschäftigtem	Wege/Pers.*24h	2,1	2,1	2,1	2,2	2,2
Anwesenheitsgrad	%	85%	85%	85%	85%	85%
Summe der Wege	Wege/24h	393	411	134	1.309	748
Kfz-Besetzungsgrad	Pers./Kfz	1,10	1,10	1,10	1,15	1,15
MIV- Anteil	%	100%	100%	95%	95%	90%
Anzahl Kfz/24 h	Kfz/24h	357	373	116	1.081	585
Quellverkehr	Kfz/24h	179	187	58	541	293
Zielverkehr	Kfz/24h	179	187	58	541	293
Besucher- / Kundenverke	ehr					
Wege je Besucher	Wege/Pers.*24h	0,15	0,15	0,30	0,20	0,20
Summe der Wege	Wege/24h	33	35	23	140	80
Kfz-Besetzungsgrad	Pers./Kfz	1,05	1,05	1,05	1,05	1,05
MIV- Anteil	%	100%	100%	100%	100%	100%
Anzahl Kfz/24 h	Kfz/24h	31	33	21	133	76
Quellverkehr	Kfz/24h	16	16	11	67	38
Zielverkehr	Kfz/24h	16	16	11	67	38
Geschäftsfahrten						
Wege je Beschäftigtem	Wege/Pers.*24h	0,10	0,10		0,15	0,15
Summe der Wege	Wege/24h	22	23		105	60
MIV- Anteil	%	100%	100%		100%	100%
Anzahl Kfz/24 h	Kfz/24h	22	23		105	60
Quellverkehr	Kfz/24h	11	12		53	30
Zielverkehr	Kfz/24h	11	12		53	30
Güterverkehr						
Lkw-Fahrten je ha	Lkw/ha	40	30		15	15
Anzahl Lkw/24 h	Lkw/24h	253	274	220	525	239
Quellverkehr	Lkw/24h	126	137	110	263	119
Zielverkehr	Lkw/24h	126	137	110	263	119
Gesamtverkehr	•					
Anzahl Kfz/24 h	Kfz/24h	663	703	357	1.845	960
Quellverkehr	Kfz/24h	332	351	179	922	480
Zielverkehr	Kfz/24h	332	351	179	922	480
SV-Anteil		38,1%	38,9%	61,6%	28,5%	24,9%

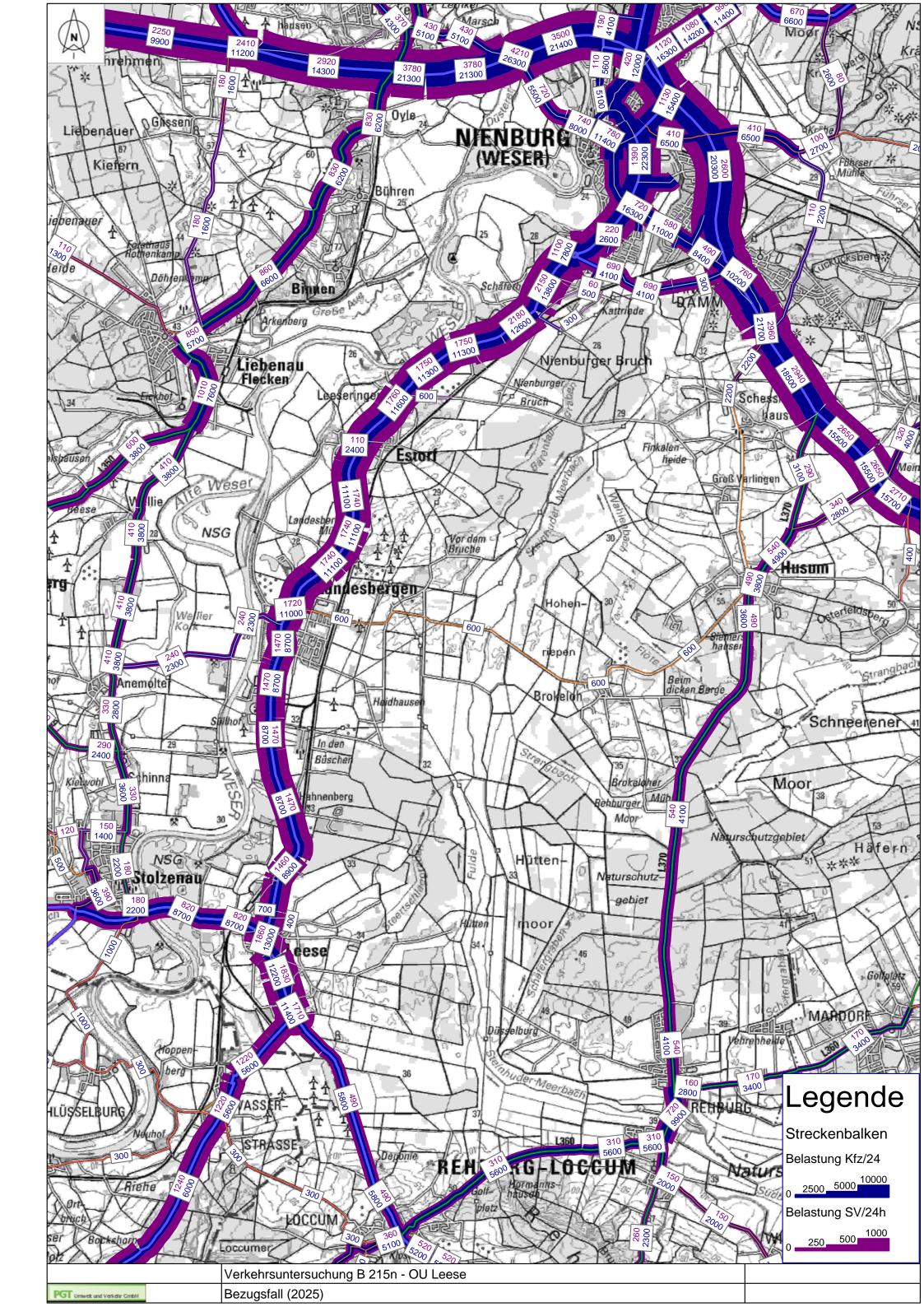

Container Anlage	9	
Umschlag	TEU	80.000
Beschäftigte	Pers./10.000 TEU	9,3
Summe Beschäftigte	Pers.	75
umschlagsbezogener	Güterverkehr	
Umrechnungsfaktor	TEU ==> Container	1,775
Anzahl Container		45.070
Straßen-Anteil	%	100%
Lkw pro Jahr	Lkw pro Jahr	45.070
Leerfahrtanteil	%	20%
Mehrfachcontainer	%	2%
zus. Leerfahrten	Lkw pro Jahr	9.014
abz. Mehrfachcontainer	Lkw pro Jahr	901
Lkw-Fahren		
pro Jahr	Lkw pro Jahr	53.183
pro Monat	Lkw pro Monat	4.432
Arbeitstage pro Monat		21
Anzahl Lkw/24 h	Lkw/24h	208
Quellverkehr	Lkw/24h	104
Zielverkehr	Lkw/24h	104
sonstiger Güterverkeh	<u> </u> r	
	Fahrten/10.000	
Fahrten	TEU	1,50
Anzahl Kfz/24 h	Kfz/24h	12
Quellverkehr	Kfz/24h	6
Zielverkehr	Kfz/24h	6
Gesamtverkehr		
Anzahl Kfz/24 h	Kfz/24h	220
Quellverkehr	Kfz/24h	110
Zielverkehr	Kfz/24h	110

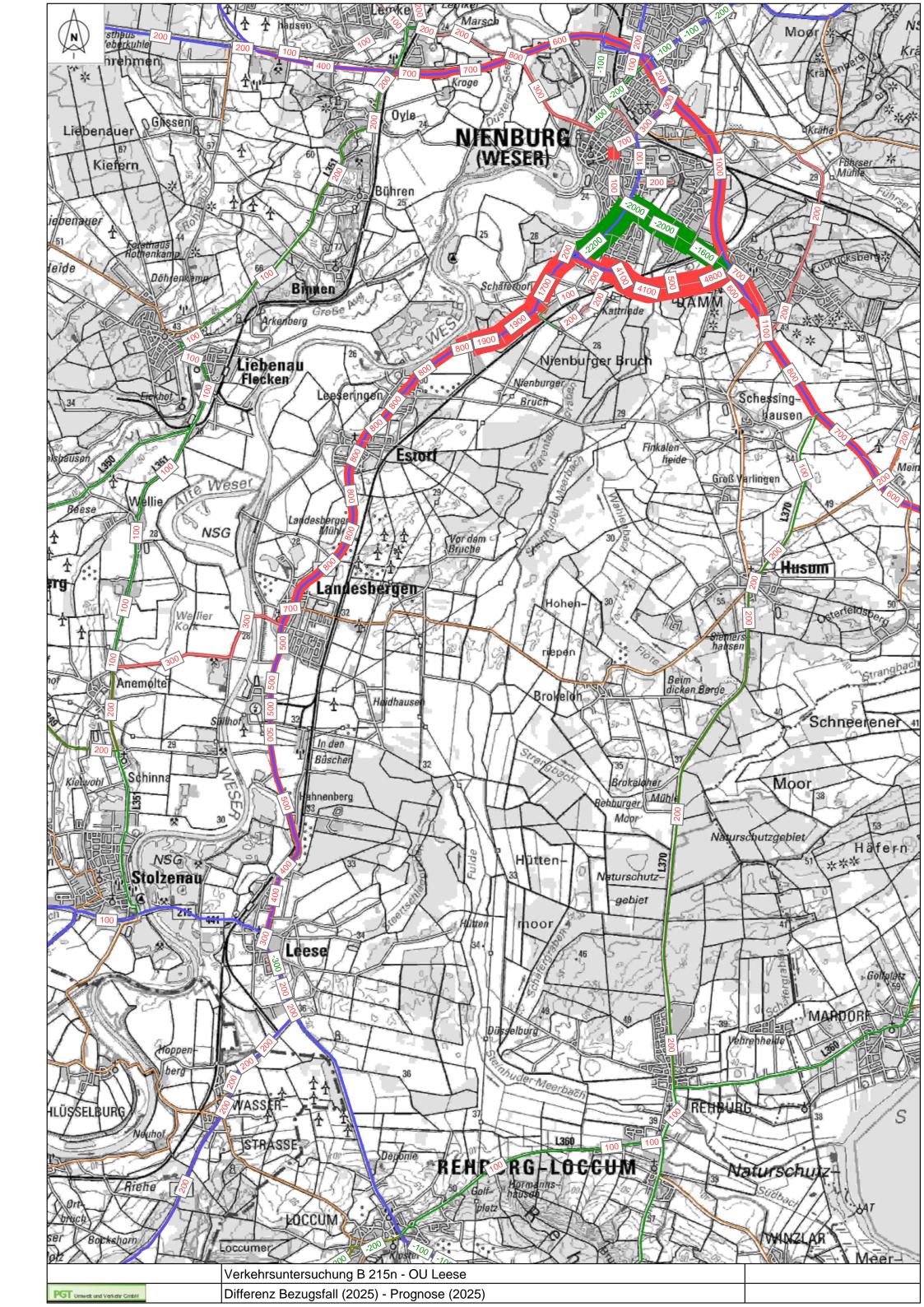


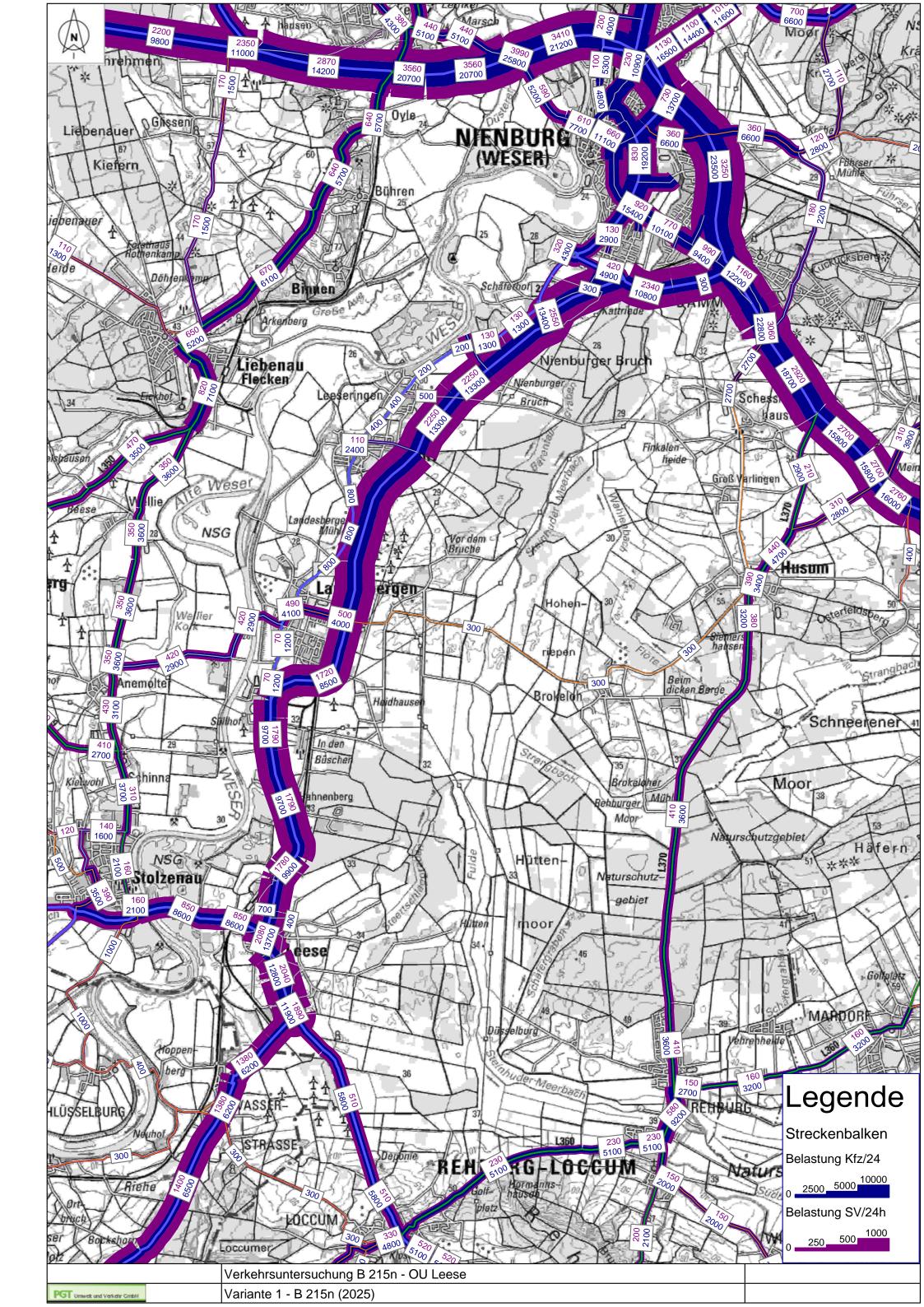

Strukturerweiterungen aus dem Verkehrsentwicklungsplan der Stadt Nienburg (Weser) aus dem Jahr 2005 /19/

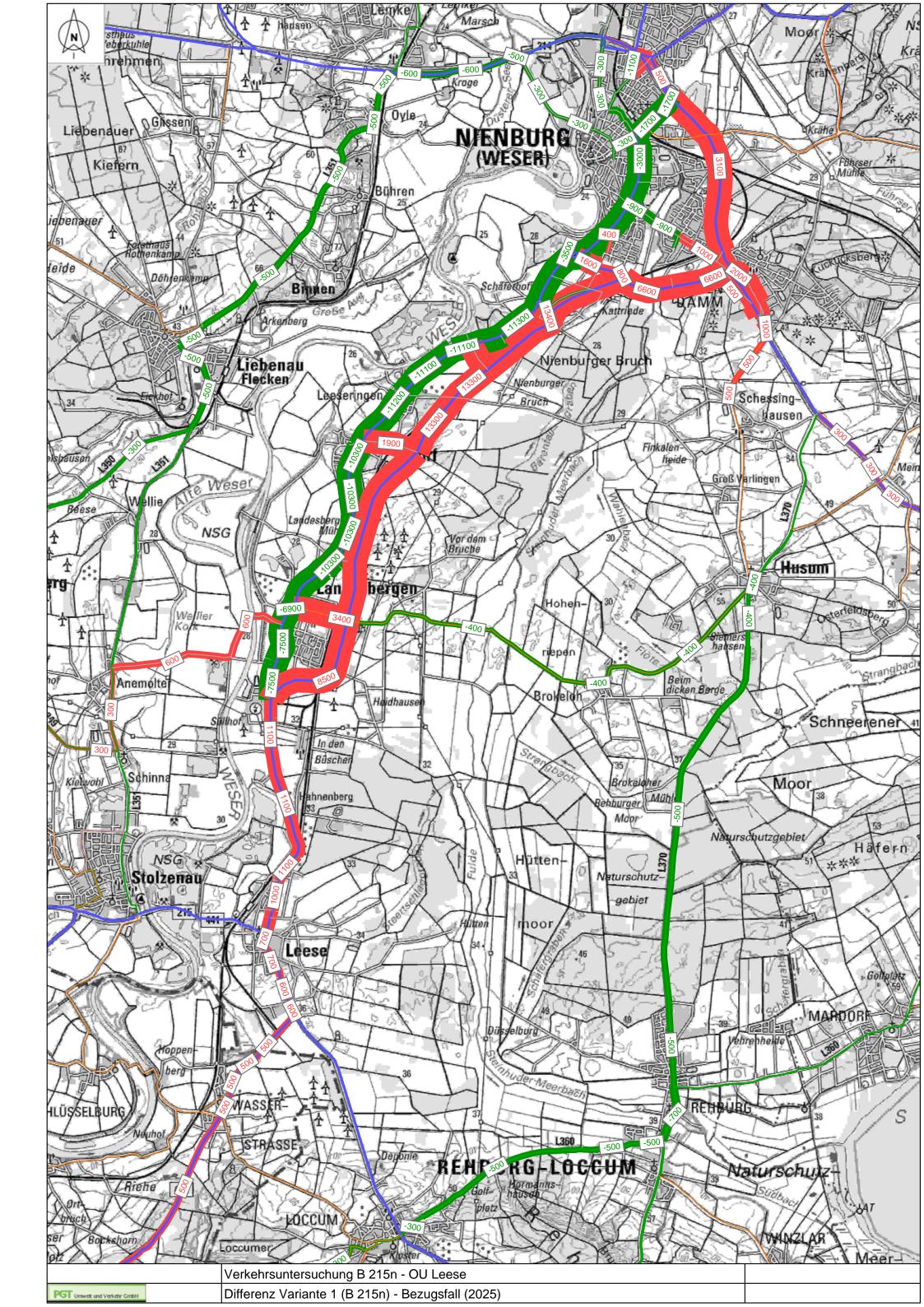

Anlage C: Umlegungsergebnisse

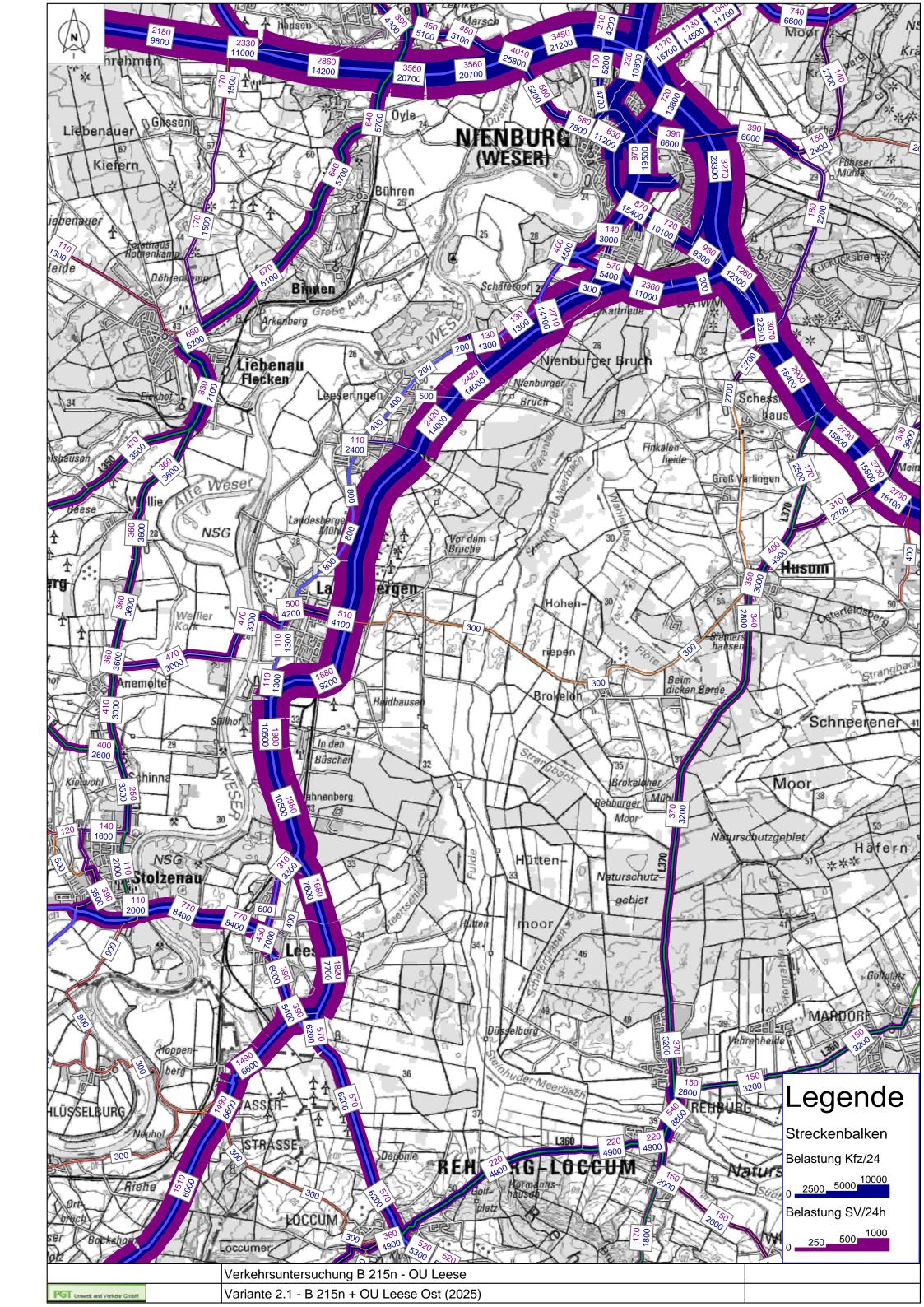

Anlage D: Leistungsfähigkeitsberechnung

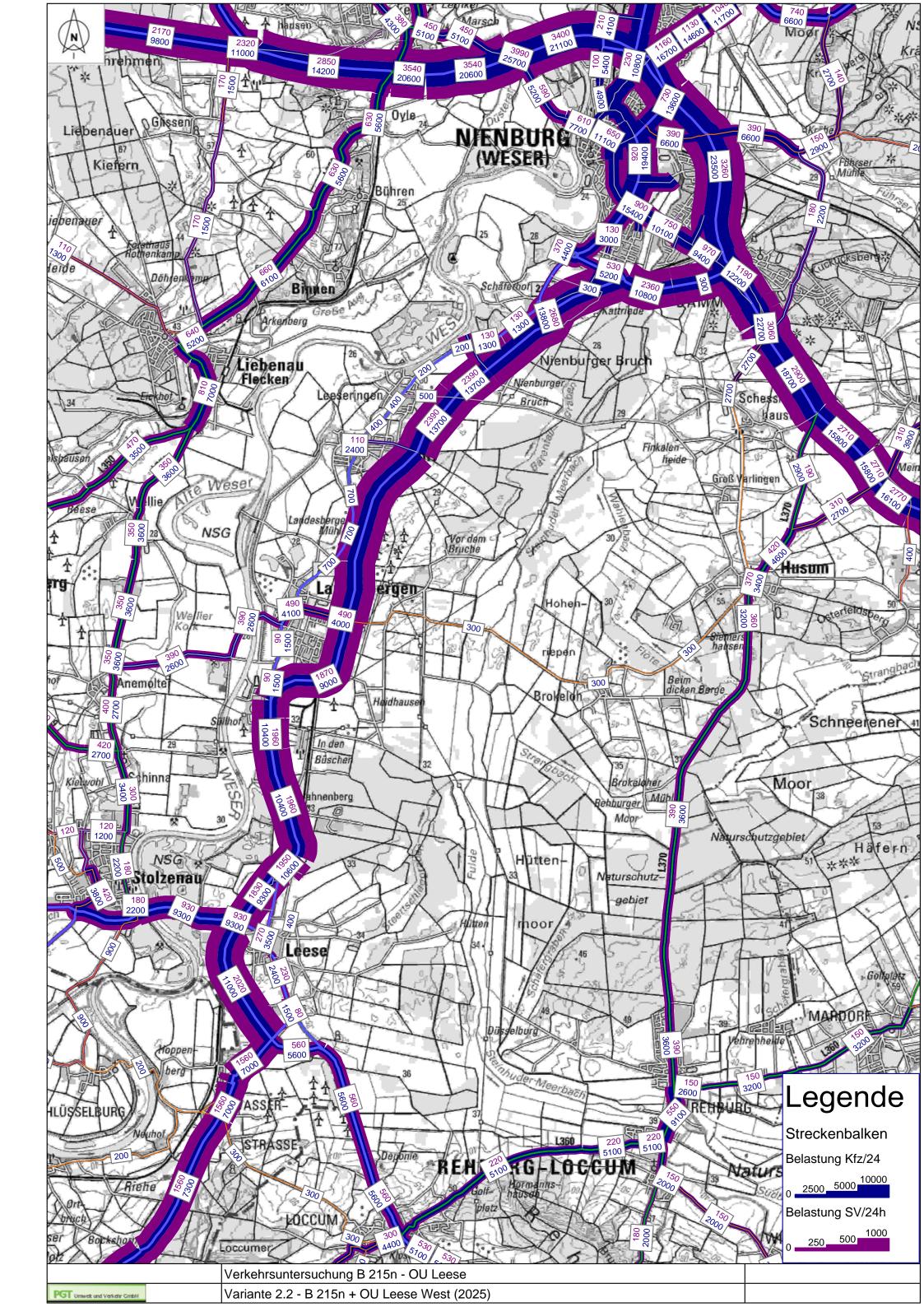


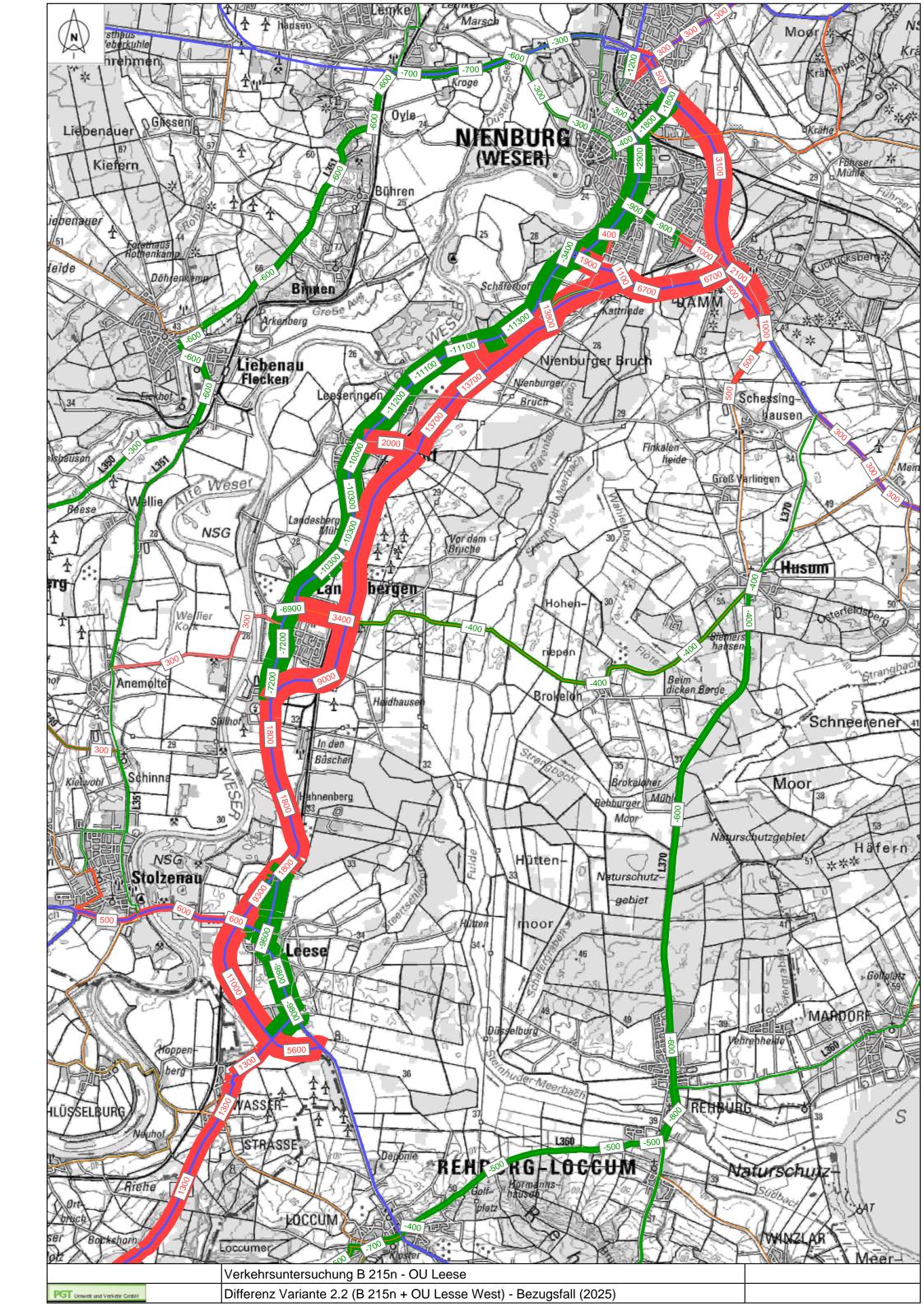


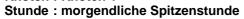




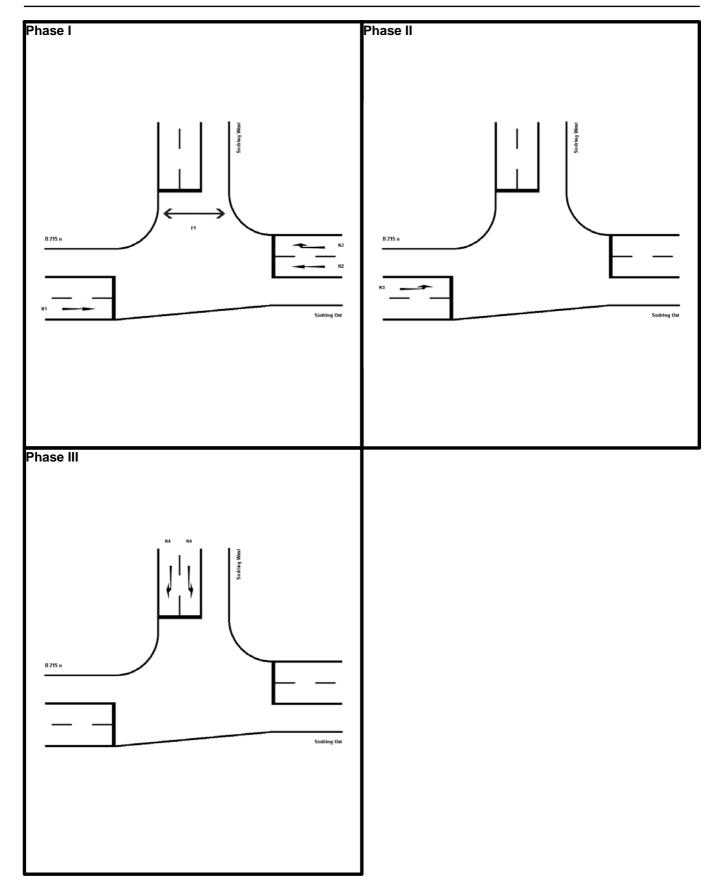






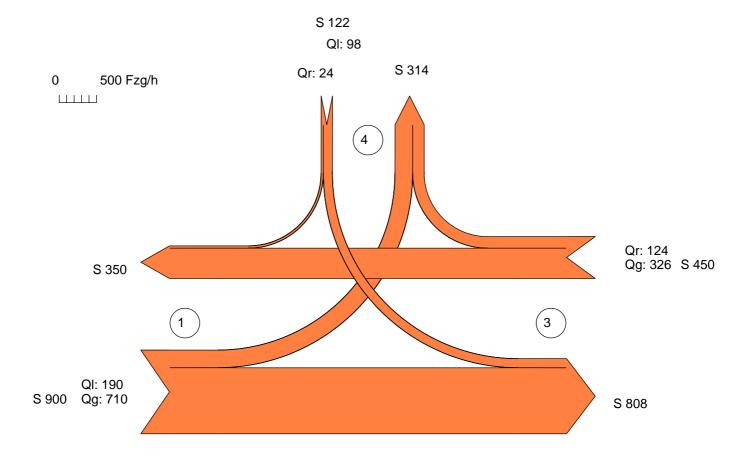


Knoten K 1: Südring / B 215_{neu}


Übersicht Phaseneinteilung

Datei : 130617-K1-vor.amp Projekt : B 215 neu

Knoten: Knoten 1


Datei : 130617-K1-vor.amp Projekt : B 215 neu

Knoten : Knoten 1

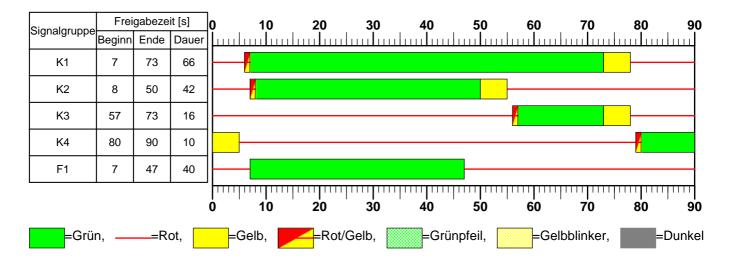
Stunde: morgendliche Spitzenstunde

Fahrzeuge

Summe= 1472

Zufahrt 1 : B 215 n

Zufahrt 2:

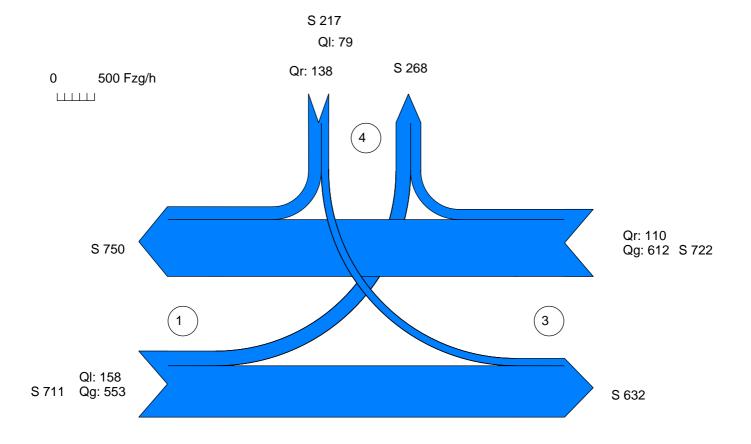

Zufahrt 3 : Südring Ost Zufahrt 4 : Südring West

Datei: 130617-K1-vor.amp

Projekt : B 215 neu Knoten : Knoten 1

Stunde: morgendliche Spitzenstunde

Ea	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	je						
FO	mbiatt 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	erkeh	ır				
	Projekt:	B 215 i	neu										Sta	dt:					
Kno	tenpunkt:	Knoten	1										Datu	m: <u>24.</u>	06.20	13			
Zeit	abschnitt:	morger	ndliche	Spitzer	nstunde							В	earbeit	er:					
	$t_{U} = 90$) s	•	T = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N_{GE}	n_{H}	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(2)	66	0,733	24	710	17,8	1614	2,23	29,6	1184	0,600	0,00	8,5	48	90	7,80	47	5,7	Α
2	K2(8)	42	0,467	48	326	8,2	1614	2,23	18,8	753	0,433	0,00	5,4	66	90	7,29	44	16,0	Α
3	K2(9)	41,8	0,464	48,2	124	3,1	1615	2,23	18,8	750	0,165	0,00	1,8	58	90	3,48	21	14,0	Α
4	K3(1)	16	0,178	74	190	4,8	1614	2,23	7,2	287	0,662	0,16	4,4	92	90	6,91	41	36,6	С
5	K4(10)	10	0,111	80	98	2,5	1614	2,23	4,5	179	0,546	0,00	2,3	92	90	4,26	26	37,9	С
6	K4(12)	10	0,111	80	24	0,6	1614	2,23	4,5	179	0,134	0,00	0,5	83	90	1,56	9	36,1	С
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
		l	<u>I</u>	q _K =	1472	Fz/h	<u> </u>	<u> </u>	C _K =	3332	Fz/h			0,523	32	g,	maßa =	0,606	5


Datei : 130617-K1-nach.amp Projekt : B 215 neu

Knoten : Knoten 1

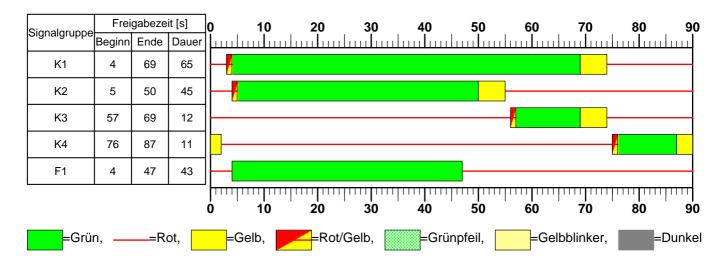
Stunde: nachmittägliche Spitzenstunde

Fahrzeuge

Summe= 1650

Zufahrt 1 : B 215 n

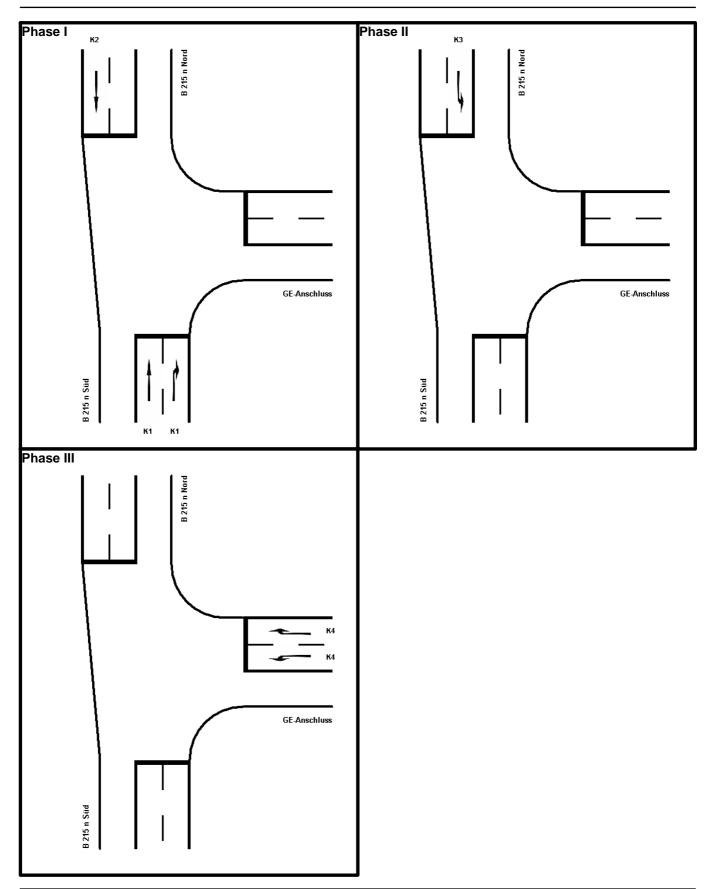
Zufahrt 2:


Zufahrt 3 : Südring Ost Zufahrt 4 : Südring West

Datei: 130617-K1-nach.amp

Projekt : B 215 neu Knoten : Knoten 1

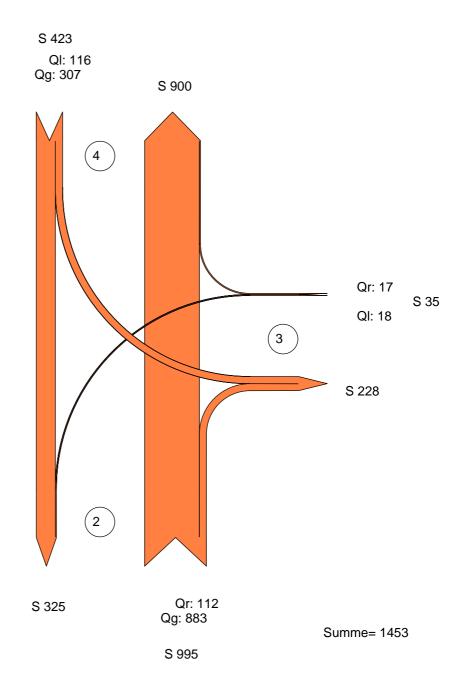
Stunde: nachmittägliche Spitzenstunde


 -	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	ge						
FOI	IIIDIAII 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	erker/	r				
	Projekt:	B 215 ı	neu										Sta	dt:					
Kno	tenpunkt:	Knoten	1										Datu	m: <u>25</u> .	06.20	13			
Zeit	abschnitt:	nachm	ittäglich	e Spitz	zenstund	de						В	earbeit	er:					
	t _U = 90) s		T = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n_{H}	h	s	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(2)	65	0,722	25	553	13,8	1614	2,23	29,1	1166	0,474	0,00	5,8	42	90	6,61	40	5,3	Α
2	K2(8)	45	0,500	45	612	15,3	1614	2,23	20,2	807	0,758	1,20	13,1	86	90	13,05	78	23,5	В
3	K2(9)	44,8	0,498	45,2	110	2,8	1615	2,23	20,1	804	0,137	0,00	1,5	54	90	3,04	18	12,2	Α
4	K3(1)	12	0,133	78	158	4,0	1614	2,23	5,4	215	0,734	1,17	3,9	98	90	7,62	46	57,1	D
5	K4(10)	11	0,122	79	79	2,0	1614	2,23	4,9	197	0,400	0,00	1,8	90	90	3,59	22	36,5	С
6	K4(12)	11	0,122	79	138	3,5	1614	2,23	4,9	197	0,699	0,70	3,4	97	90	6,45	39	50,7	D
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1650	Fz/h			C _K =	3386	Fz/h		g =	0,597	'0	g	maßg =	0,7449	9

Knoten K 2: Anbindung interkommunales Logistik- und Industriezentrum Leeseringen / Nienburg / B 215 _{neu}	
Shiburg / D 213 _{neu}	

Übersicht Phaseneinteilung

Datei : 131119-K2-nach.amp Projekt : B 215 n (P 2444) Knoten : K 2 GE Leeseringen Stunde : nachmittägliche Spitzenstunde


Datei : 131119-K2-vor.amp Projekt : B 215 n (P 2444) Knoten : K 2 GE Leeseringen

Stunde: morgendliche Spitzenstunde

Fahrzeuge

0 750 Fzg/h

Zufahrt 1 :

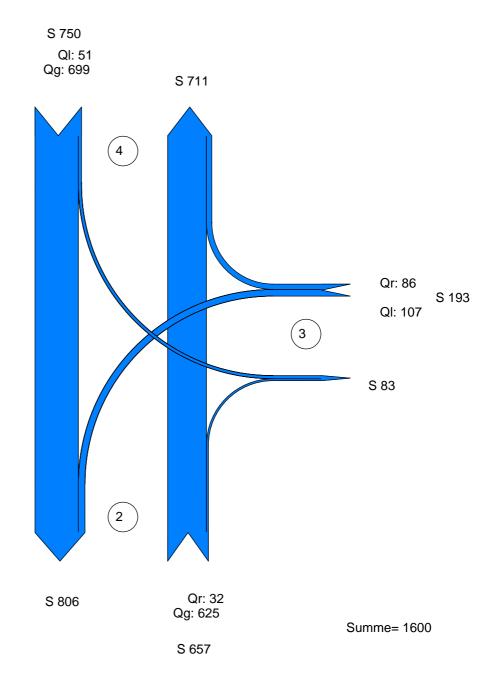
Zufahrt 2 : B 215 n Süd Zufahrt 3 : GE-Anschluss Zufahrt 4 : B 215 n Nord

Datei : 131119-K2-nach.amp Projekt : B 215 n (P 2444) Knoten : K 2 GE Leeseringen

Stunde : R 2 GE Leeseringen
Stunde : nachmittägliche Spitzenstunde

Ear	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	ge						
-01	IIIDIAII 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	erkeh/	ır				
	Projekt:_l	3 215	n (P 244	4)									Sta	dt:					
Kno	tenpunkt:_l	< 2 GE	Leeser	ingen									Datu	m: <u>19.</u>	11.20	13			
Zeit	abschnitt: ı	morgei	ndliche S	Spitzei	nstunde							В	earbeit	er:					
	t _U = 90	S	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	57	0,633	33	883	22,1	1545	2,33	24,5	979	0,902	2,72	22,1	100	90	15,45	93	24,1	В
2	K1(6)	57	0,633	33	112	2,8	1545	2,33	24,5	979	0,114	0,00	1,1	39	90	2,46	15	6,5	Α
3	K2(11)	71	0,789	19	307	7,7	1545	2,33	30,5	1219	0,252	0,00	2,0	26	90	3,42	21	2,5	Α
4	K3(10)	10	0,111	80	116	2,9	1545	2,33	4,3	172	0,676	0,37	2,8	97	90	5,37	32	46,2	С
5	K4(7)	7	0,078	83	18	0,5	1545	2,33	3,0	120	0,150	0,00	0,4	80	90	1,32	8	38,7	С
6	K4(9)	7	0,078	83	17	0,4	1545	2,33	3,0	120	0,141	0,00	0,4	100	90	1,28	8	38,7	С
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1453	Fz/h			C _K =	3589	Fz/h			0,667	77	g	maßg =	0,8629	9

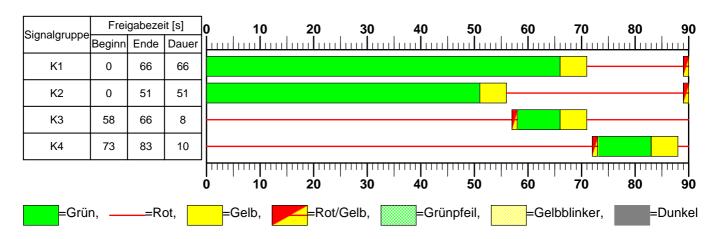
Datei : 131119-K2-nach.amp Projekt : B 215 n (P 2444) Knoten : K 2 GE Leeseringen


Stunde: nachmittägliche Spitzenstunde

Fahrzeuge

0 750 Fzg/h

ШШ



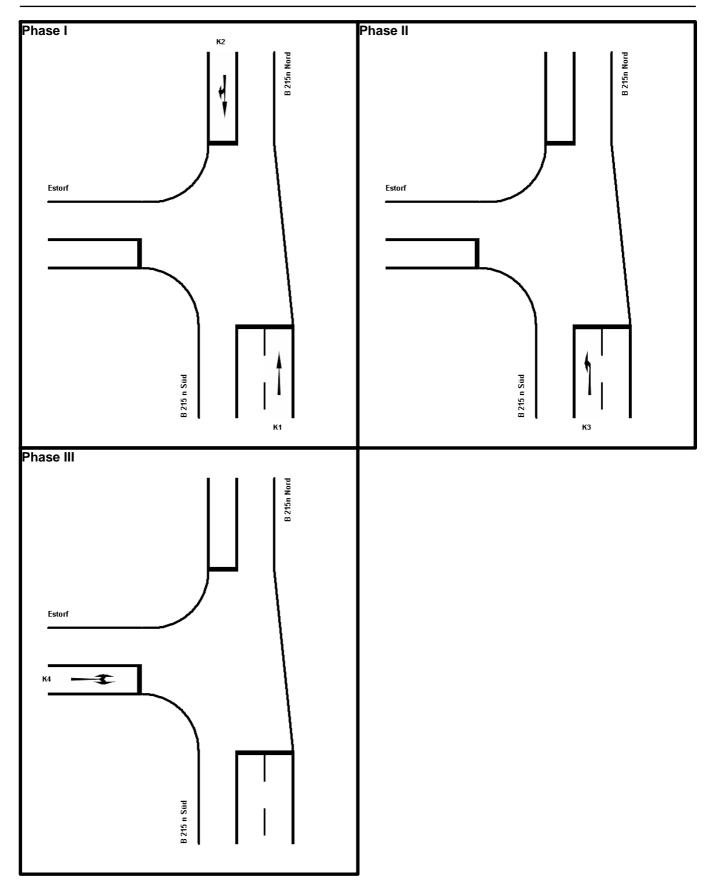
Zufahrt 1:

Zufahrt 2: B 215 n Süd Zufahrt 3: GE-Anschluss Zufahrt 4: B 215 n Nord

Datei : 130617-K2-nach.amp Projekt : B 215 n (P 2444) Knoten : K 2 GE Leeseringen

Stunde : nachmittägliche Spitzenstunde

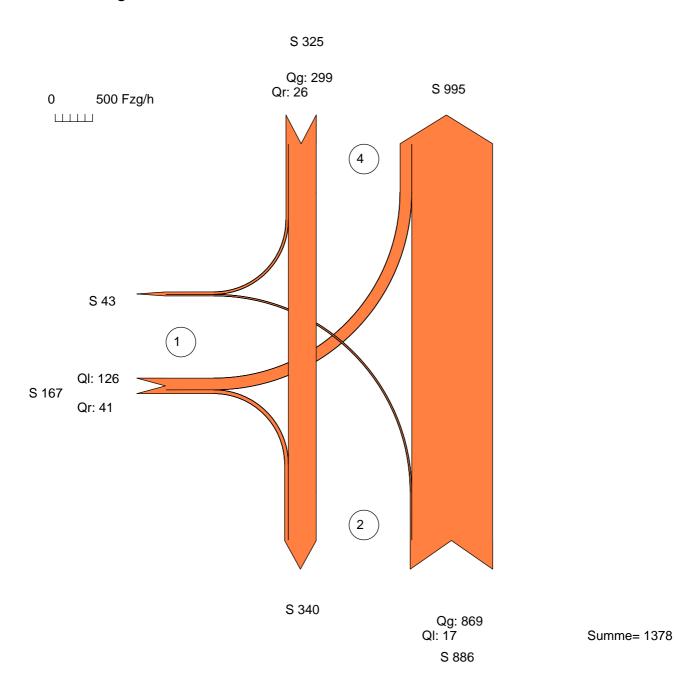
For	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	je						
5	Ilibiatt 3					a) Na	chweis	s der V	erkehi	squalit	ät im K	raftfah	rzeugv	erket/	ır				
	Projekt:_l	B 215	n (P 244	4)									Sta	dt:					
	tenpunkt:_l												Datu	m: <u>19.</u>	11.20	13			
Zeit	abschnitt: ı	nachm	ittägliche	e Spitz	enstund	de						В	earbeit	er:					
	t _U = 90	s	-	T = 60	min				ı										
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N_{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	56	0,622	34	625	15,6	1545	2,33	24,0	961	0,650	0,00	9,9	63	90	9,33	56	10,8	Α
2	K1(6)	56	0,622	34	32	0,8	1545	2,33	24,0	961	0,033	0,00	0,3	38	90	1,08	6	6,6	Α
3	K2(11)	68	0,756	22	699	17,5	1545	2,33	29,2	1167	0,599	0,00	7,8	45	90	7,19	43	4,9	Α
4	K3(10)	8	0,089	82	51	1,3	1545	2,33	3,4	137	0,371	0,00	1,2	92	90	2,68	16	38,6	С
5	K4(7)	10	0,111	80	107	2,7	1545	2,33	4,3	172	0,623	0,00	2,6	96	90	4,55	27	38,2	С
6	K4(9)	10	0,111	80	86	2,2	1545	2,33	4,3	172	0,501	0,00	2,0	91	90	3,86	23	37,7	С
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1600	Fz/h			C _K =	3570	Fz/h			0,596	57	g	maßa =	0,628	1


Knoten K 3: Estorf / B 215_{neu}

Übersicht Phaseneinteilung

Datei : 130617-K3-vor.amp Projekt : B 215 n (P 2444) Knoten : K 3 Estorf

Stunde: morgendliche Spitzenstunde

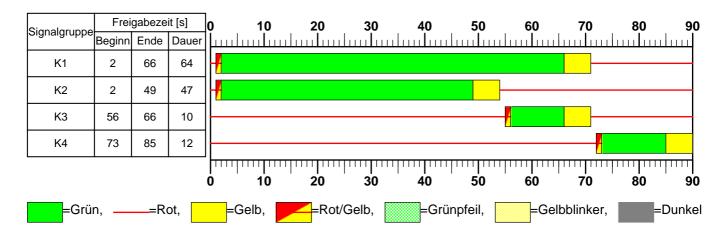

Datei : 130617-K3-vor.amp Projekt : B 215 n (P 2444)

Knoten: K 3 Estorf

Stunde: morgendliche Spitzenstunde

Fahrzeuge

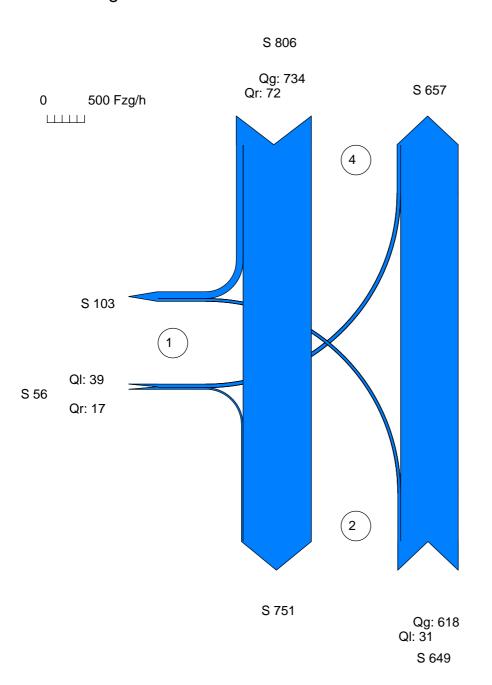
Zufahrt 1 : Estorf Zufahrt 2: B 215 n Süd


Zufahrt 3:

Datei : 130617-K3-vor.amp Projekt : B 215 n (P 2444)

Knoten: K 3 Estorf

Stunde: morgendliche Spitzenstunde


E	rmblatt 3							Knoter	npunkt	mit Li	chtsign	alanlaç	je						
-	Tilibiatt 5					a) Na	chweis	der V	erkehr	squalit	ät im K	raftfah	rzeugv	erkeh	ır				
	Projekt: B	215	n (P 244	4)									Sta	dt:					
Kn	otenpunkt: <u>K</u>	3 Es	torf										Datu	m: <u>24.</u>	06.20	13			
Ze	tabschnitt: n	norgei	ndliche S	Spitzer	nstunde							В	earbeit	er:					
	t _U = 90 s	S	-	Γ = 60	min														
Nr.	Bez.	t_{F}	f	t _S	q	m	q _S	t _B	n _C	С	g	N _{GE}	n_{H}	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	64	0,711	26	869	21,7	1614	2,23	28,7	1148	0,757	1,06	14,8	68	90	11,16	67	11,4	Α
2	K2(11,12)	47	0,522	43	325	8,1	1614	2,23	21,1	843	0,386	0,00	4,9	60	90	6,66	40	12,9	Α
3	K3(4)	10 0,111 80 17 0,4 1614 2,23 4,5 179 0,095 0,00 0													90	1,24	7	35,9	С
4	K4(3,1)	12	0,133	78	167	4,2	1614	2,23	5,4	215	0,776	1,75	4,2	100	90	8,64	52	67,0	D
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
			ı	q _K =	1378	Fz/h	<u> </u>		C _K =	2385	Fz/h	l		0,663	 36	a,	maßa =	0,7493	3

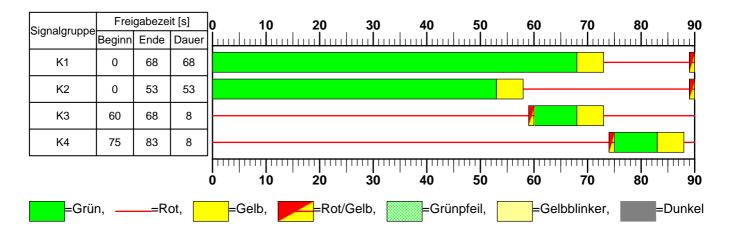
Datei : 130617-K3-nach.amp Projekt : B 215 n (P 2444) Knoten : K 3 Estorf

Stunde: nachmittägliche Spitzenstunde

Fahrzeuge

Summe= 1511

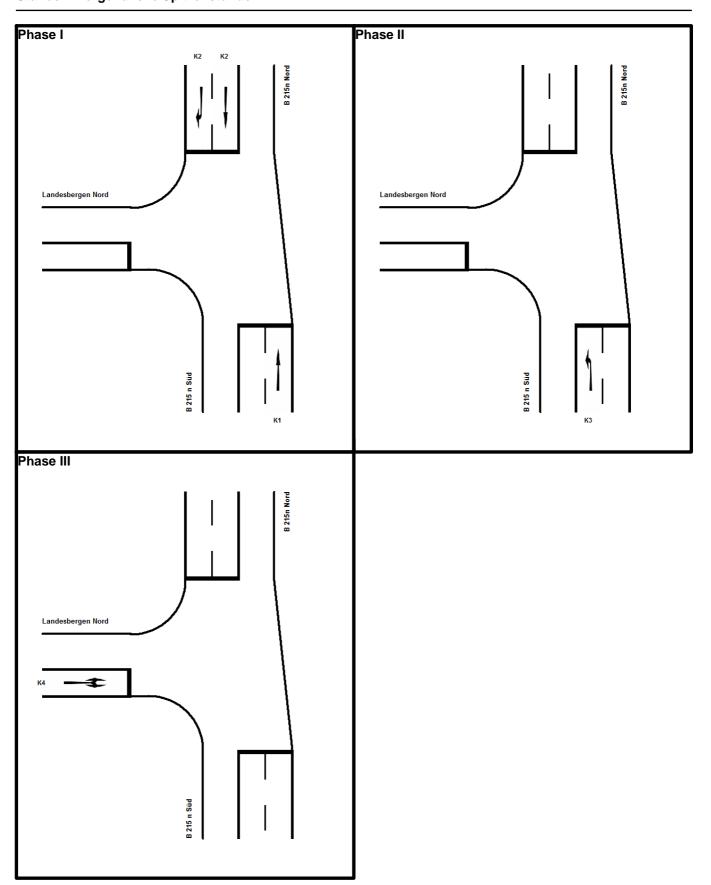
Zufahrt 1 : Estorf Zufahrt 2: B 215 n Süd


Zufahrt 3:

Datei : 130617-K3-nach.amp Projekt : B 215 n (P 2444)

Knoten: K 3 Estorf

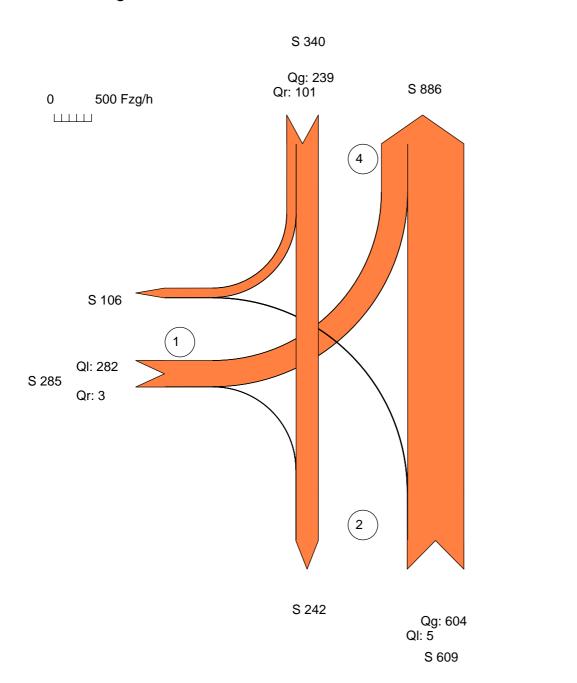
Stunde: nachmittägliche Spitzenstunde


[<u> </u>	rmblatt 3							Knoter	npunkt	mit Li	chtsign	alanlaç	ge						
-0	TIIIDIAII 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	erkeh	r				
	Projekt:_E	3 215 1	n (P 244	4)									Sta	dt:					
Kno	otenpunkt: <u>K</u>	(3 Es	torf										Datu	m: <u>25.</u>	06.20°	13			
Zei	tabschnitt: n	achm	ittägliche	e Spitz	enstund	de						В	earbeit	er:					
	t _U = 90 :	s	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	s	N_{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	68	0,756	22	618	15,5	1614	2,23	30,5	1220	0,507	0,00	6,1	39	90	6,52	39	4,4	Α
2	K2(11,12)	53	0,589	37	806	20,2	1614	2,23	23,8	951	0,848	2,01	18,6	92	90	14,82	89	22,8	В
3	K3(4)	8 0,089 82 31 0,8 1614 2,23 3,6 143 0,216 0,00 0,7 8													90	1,89	11	38,1	С
4	K4(3,1)	8 0,089 82 56 1,4 1614 2,23 3,6 143 0,390 0,00 1,3 93													90	2,87	17	38,7	С
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1511	Fz/h			C _K =	2457	Fz/h			0,678	86	g	maßg =	0,7973	3

Knoten K 4: Landesbergen Mitte / B 215_{neu}

Übersicht Phaseneinteilung

Datei : 130617-K4-vor.amp Projekt : B 215 n (P 2444) Knoten : K 4 Landesbergen Nord Stunde : morgendliche Spitzenstunde



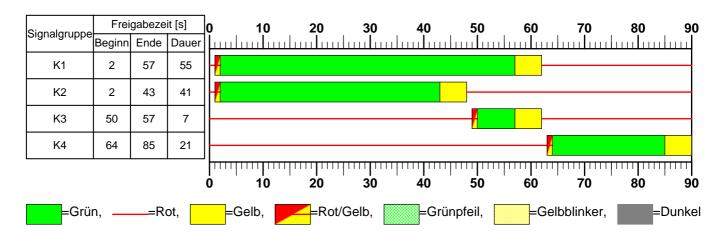
Datei : 130617-K4-vor.amp Projekt : B 215 n (P 2444) Knoten : K 4 Landesbergen Nord

Stunde: morgendliche Spitzenstunde

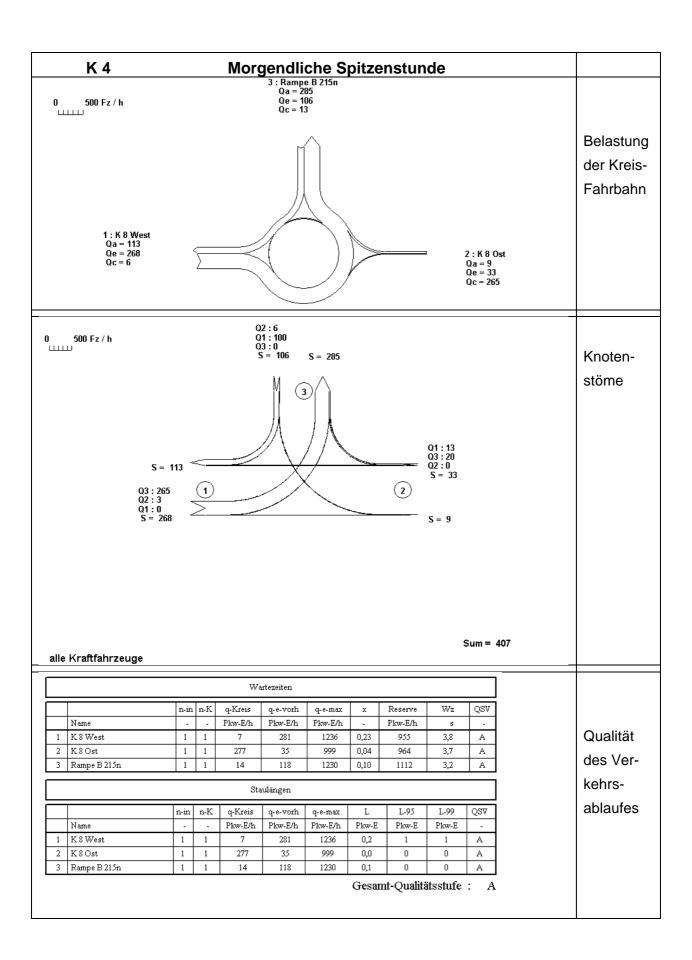
Fahrzeuge

Summe= 1234

Zufahrt 1: Landesbergen Nord


Zufahrt 2: B 215 n Süd

Zufahrt 3:


Datei : 130617-K4-vor.amp Projekt : B 215 n (P 2444)

Knoten : K 4 Landesbergen Nord Stunde : morgendliche Spitzenstunde

Ear	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	ge						
-01	IIIDIAII 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	erkeh	ır				
	Projekt:_I	3 215	n (P 244	4)									Sta	dt:					
Kno	tenpunkt:_l	K 4 La	ndesber	gen N	ord								Datu	m: <u>24.</u>	06.20	13			
Zeit	abschnitt: ı	morgei	ndliche S	Spitzer	nstunde							В	earbeit	er:					
	t _U = 90	S	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	55	0,611	35	604	15,1	1614	2,23	24,7	987	0,612	0,00	9,4	62	90	9,29	56	10,9	Α
2	K2(11)	41	0,456	49	239	6,0	1614	2,23	18,4	735	0,325	0,00	3,8	63	90	5,80	35	15,7	Α
3	K2(12)	41	0,456	49	101	2,5	1614	2,23	18,4	735	0,137	0,00	1,5	60	90	3,03	18	14,2	Α
4	K3(4)	7 0,078 83 5 0,1 1614 2,23 3,1 126 0,040 0,00 0 21 0,233 69 285 7,1 1614 2,23 9,4 377 0,757 1,39 0													90	0,59	4	38,4	С
5	K4(3,1)	21	0,233	69	285	7,1	1614	1,39	6,9	97	90	10,55	63	45,4	С				
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1234	Fz/h			C _K =	2960	Fz/h			0,548	37	g	maßg =	0,6550)



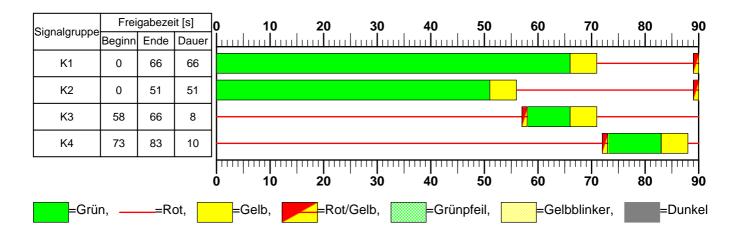
Datei : 130617-K4-nach.amp Projekt : B 215 n (P 2444) Knoten : K 4 Landesbergen Nord

Stunde : nachmittägliche Spitzenstunde

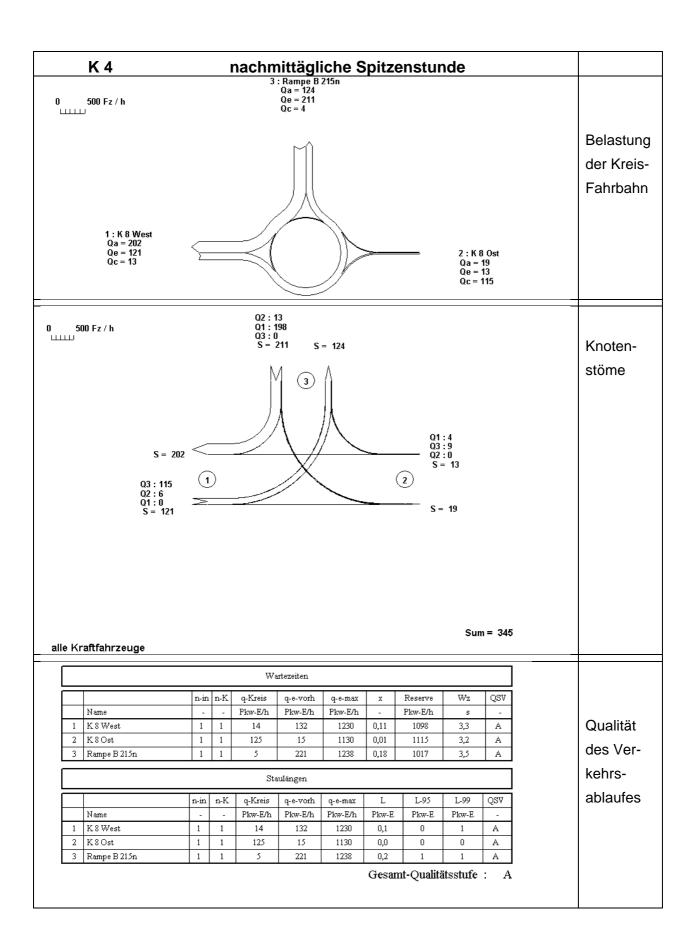
Fahrzeuge

Summe= 1408

Zufahrt 1: Landesbergen Nord

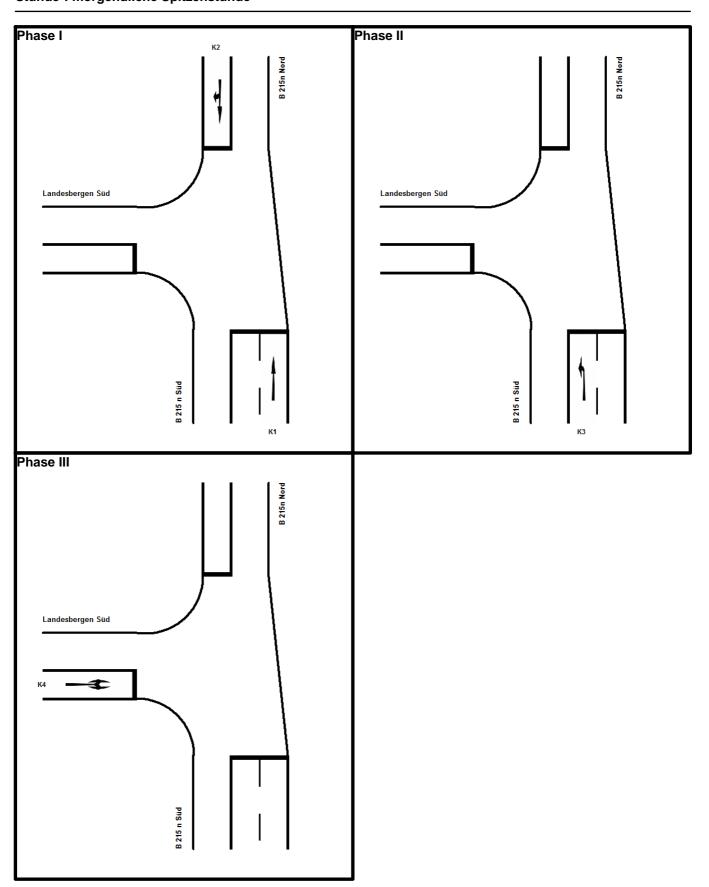

Zufahrt 2: B 215 n Süd

Zufahrt 3:


Datei : 130617-K4-nach.amp Projekt : B 215 n (P 2444) Knoten : K 4 Landesbergen Nord

Knoten: K 4 Landesbergen Nord Stunde: nachmittägliche Spitzenstunde

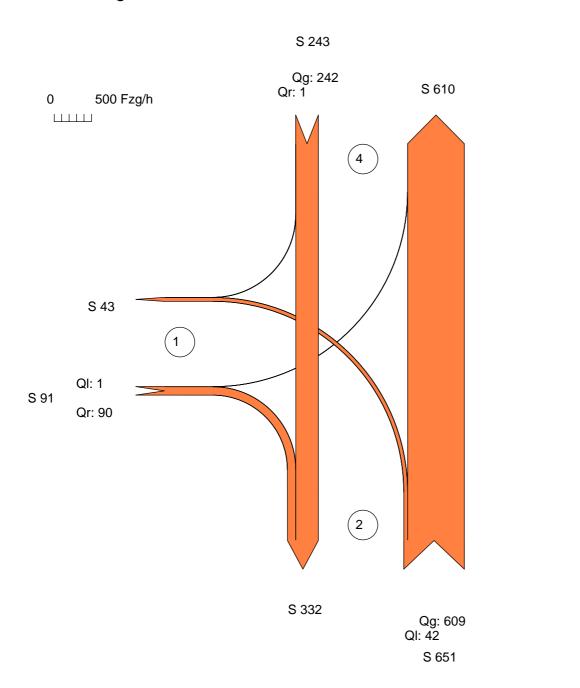
Ear	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	ge						
-01	IIIDIAII 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	verkeh	ır				
	Projekt:_I	3 215	n (P 244	4)									Sta	dt:					
Kno	tenpunkt:_l	K 4 La	ndesber	gen N	ord								Datu	m: <u>25.</u>	06.20°	13			
Zeit	abschnitt: ı	nachm	ittägliche	e Spitz	zenstund	de						В	earbeit	er:					
	$t_{U} = 90$	s	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	66	0,733	24	528	13,2	1614	2,23	29,6	1184	0,446	0,00	5,2	39	90	6,17	37	4,8	Α
2	K2(11)	51	0,567	39	545	13,6	1614	2,23	22,9	915	0,596	0,00	8,9	65	90	9,33	56	12,8	Α
3	K2(12)	51	0,567	39	206	5,2	1614	2,23	22,9	915	0,225	0,00	2,6	50	90	4,34	26	9,7	Α
4	K3(4)	8 0,089 82 5 0,1 1614 2,23 3,6 143 0,035 0,00													90	0,59	4	37,5	С
5	K4(3,1)	10	0,111	80	124	3,1	1614	2,23	4,5	179	0,691	0,59	3,0	97	90	5,93	36	50,3	D
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1408	Fz/h			C _K =	3336	Fz/h			0,491	8	g	maßg =	0,6093	3



Knoten K 5: Landesbergen Süd / B 215_{neu}

Übersicht Phaseneinteilung

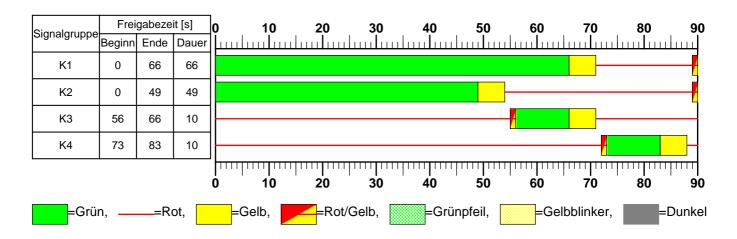
Datei : 130617-K5-vor.amp Projekt : B 215 n (P 2444) Knoten : K 5 Landesbergen Süd Stunde : morgendliche Spitzenstunde



Datei : 130617-K5-vor.amp Projekt : B 215 n (P 2444) Knoten : K 5 Landesbergen Süd Stunde : morgendliche Spitzenstunde

Fahrzeuge

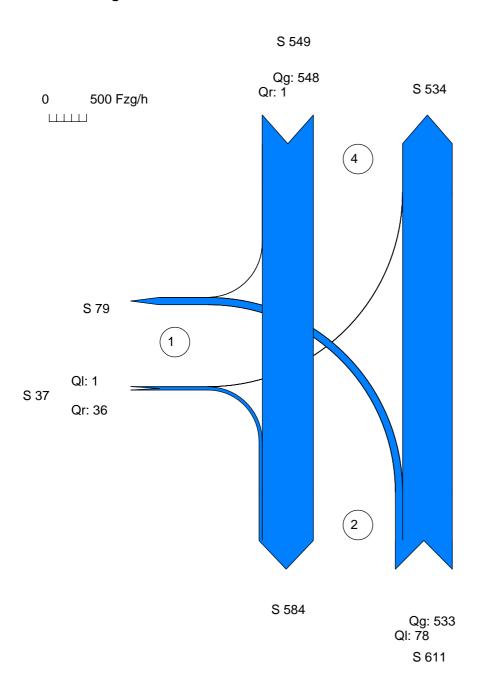
Zufahrt 1 : Landesbergen Süd Zufahrt 2 : B 215 n Süd


Zufahrt 3:

Zufahrt 4: B 215n Nord

Summe= 985

Datei : 130617-K5-vor.amp Projekt : B 215 n (P 2444) Knoten : K 5 Landesbergen Süd Stunde : morgendliche Spitzenstunde


E_	rmblatt 3							Knoter	npunkt	mit Li	chtsign	alanlaç	је						
	illibiatt 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	erkeh/	ır				
	Projekt: E	3 215 1	n (P 244	4)									Sta	dt:					
Kno	otenpunkt: <u>K</u>	5 Laı	ndesber	gen Si	üd								Datu	m: <u>24.</u>	06.20°	13			
Zei	tabschnitt: n	norger	ndliche S	Spitzer	nstunde							В	earbeit	er:					
	t _U = 90	S	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	66	0,733	24	609	15,2	1614	2,23	29,6	1184	0,514	0,00	6,5	43	90	6,90	41	5,1	Α
2	K2(11,12)	49	0,544	41	243	6,1	1614	2,23	22,0	879	0,276	0,00	3,3	54	90	5,11	31	11,0	Α
3	K3(4)	10	0,111	80	42	1,1	1614	2,23	4,5	179	0,234	0,00	1,0	91	90	2,30	14	36,5	С
4	K4(3,1)	10 0,111 80 91 2,3 1614 2,23 4,5 179 0,507 0,00 2,													90	4,03	24	37,7	С
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	985	Fz/h			C _K =	2421	Fz/h			0,442	27	g	maßg =	0,4973	3

Datei : 130617-K5-nach.amp Projekt : B 215 n (P 2444) Knoten : K 5 Landesbergen Sud

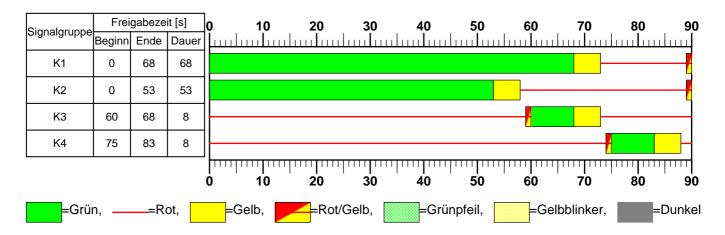
Stunde : nachmittägliche Spitzenstunde

Fahrzeuge

Summe= 1197

Zufahrt 1 : Landesbergen Süd

Zufahrt 2 : B 215 n Süd

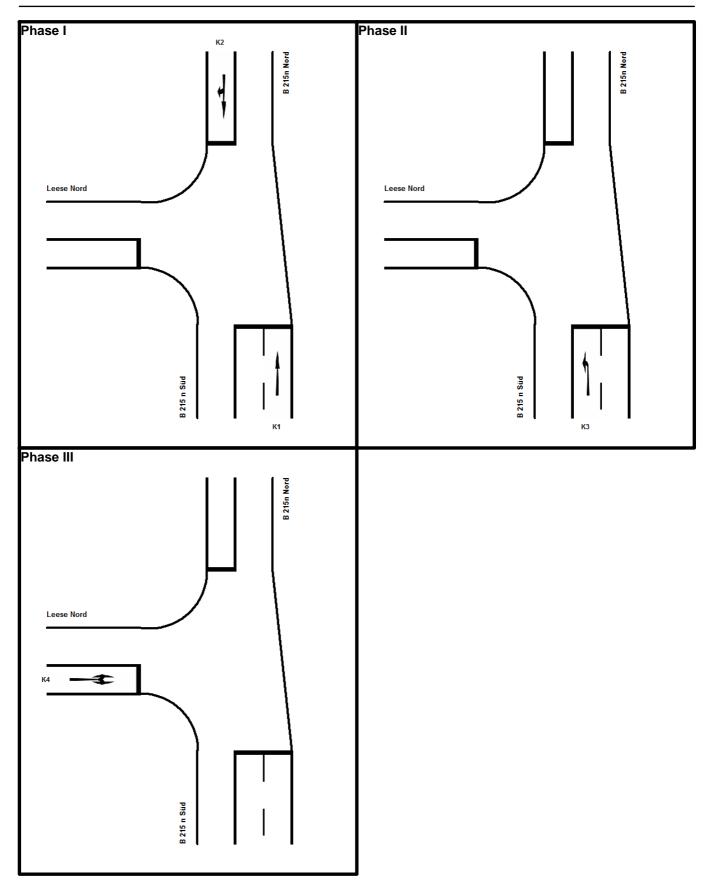

Zufahrt 3:

Datei: 130617-K5-nach.amp Projekt : B 215 n (P 2444)

Knoten: K 5 Landesbergen Süd

Stunde : nachmittägliche Spitzenstunde

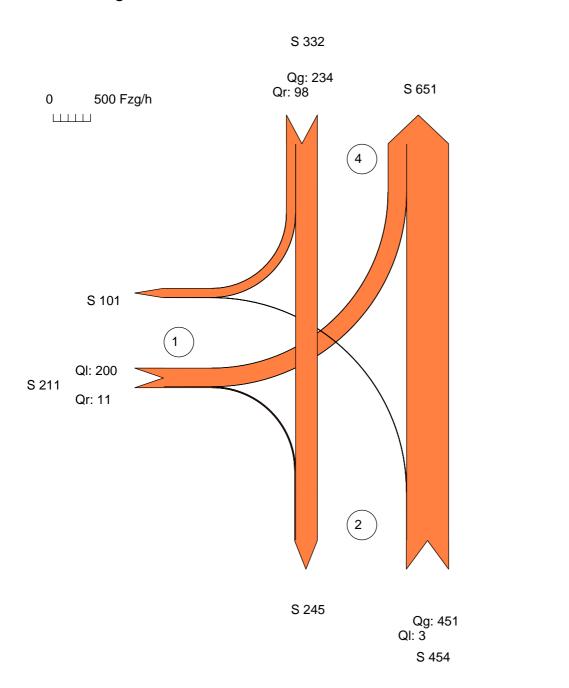
Ea	rmblatt 3							Knoter	npunkt	mit Li	chtsign	alanlaç	ge						
	illibiatt 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	verkeh	ır				
	Projekt: E	3 215 1	n (P 244	4)									Sta	dt:					
Kno	otenpunkt: <u>K</u>	5 Laı	ndesber	gen Si	üd								Datu	m: <u>25.</u>	06.20°	13			
Zei	tabschnitt: n	achm	ittägliche	e Spitz	zenstund	de						В	earbeit	er:					
	t _U = 90 :	s	-	Γ = 60	min											_			
Nr.	Bez.	t _F	f	t _S	q	m	q _s	t _B	n _C	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	68	0,756	22	533	13,3	1614	2,23	30,5	1220	0,437	0,00	4,9	37	90	5,80	35	4,0	Α
2	K2(11,12)	53	0,589	37	549	13,7	1614	2,23	23,8	951	0,577	0,00	8,6	63	90	8,99	54	11,5	Α
3	K3(4)	8														3,66	22	39,3	С
4	K4(3,1)	8 0,089 82 37 0,9 1614 2,23 3,6 143 0,258 0,00 0													90	2,14	13	38,2	С
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1197	Fz/h			C _K =	2457	Fz/h			0,502	27	g	maßg =	0,5553	3


Knoten K 6: OU Leese Ost / Anschluss Nord

Übersicht Phaseneinteilung

Datei : 130617-K6-vor.amp Projekt : B 215 n (P 2444) Knoten : K 6 Leese Nord

Stunde: morgendliche Spitzenstunde

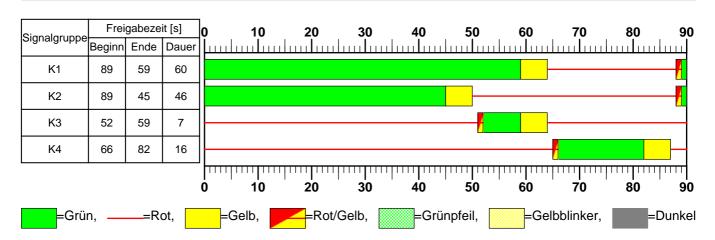


Datei : 130617-K6-vor.amp Projekt : B 215 n (P 2444) Knoten : K 6 Leese Nord

Stunde: morgendliche Spitzenstunde

Fahrzeuge

Zufahrt 1 : Leese Nord Zufahrt 2 : B 215 n Süd

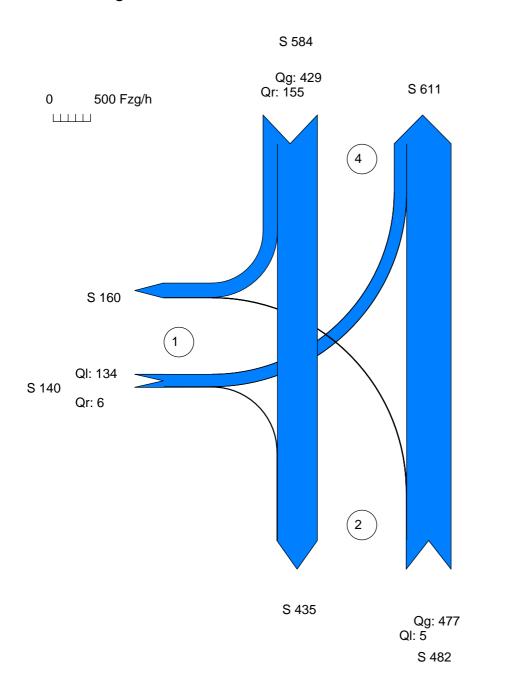

Zufahrt 3:

Zufahrt 4: B 215n Nord

Summe= 997

Datei : 130617-K6-vor.amp Projekt : B 215 n (P 2444) Knoten : K 6 Leese Nord

Stunde: morgendliche Spitzenstunde


E-0	rmblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	je						
	IIIIbiatt 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	erket/	ır				
	Projekt:_E	3 215 ו	n (P 244	4)									Sta	dt:					
	otenpunkt: <u>k</u>													m: <u>21.</u>	06.20°	13			
Zei	tabschnitt: n	norger	ndliche S	Spitzer	nstunde							В	earbeit	er:					
	t _U = 70	s	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N_{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	45	0,643	25	388	7,5	1614	2,23	20,2	1038	0,374	0,00	3,5	47	90	5,01	30	5,9	Α
2	K2(11,12)	28	0,400	42	345	6,7	1614	2,23	12,6	646	0,534	0,00	5,1	76	90	6,86	41	16,0	Α
3	K3(4)	10	0,143	60	3	0,1	1614	2,23	4,5	231	0,013	0,00	0,1	100	90	0,37	2	25,8	В
4	K4(3,1)	11	0,157	59	174	3,4	1614	2,23	4,9	254	0,686	0,51	3,3	97	90	5,95	36	35,1	С
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	910	Fz/h			C _K =	2169	Fz/h			0,493	 31	g	maßa =	0,5817	7

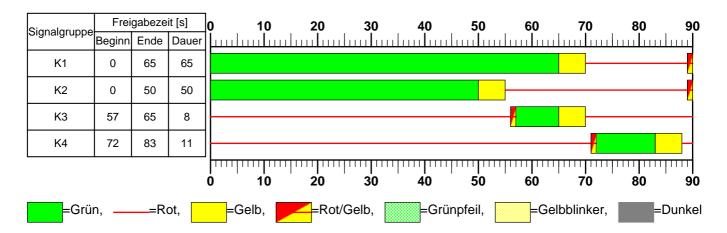
Datei : 130617-K6-nach.amp Projekt : B 215 n (P 2444) Knoten : K 6 Leese Nord

Stunde: nachmittägliche Spitzenstunde

Fahrzeuge

Summe= 1206

Zufahrt 1 : Leese Nord Zufahrt 2 : B 215 n Süd

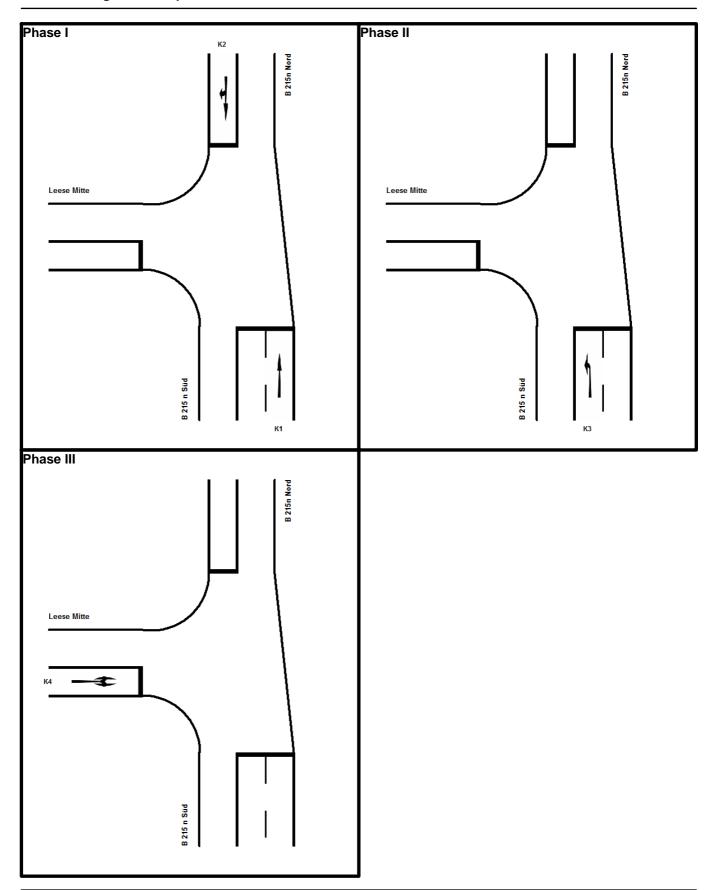

Zufahrt 3:

Datei: 130617-K6-nach.amp Projekt : B 215 n (P 2444)

Knoten: K 6 Leese Nord

Stunde: nachmittägliche Spitzenstunde

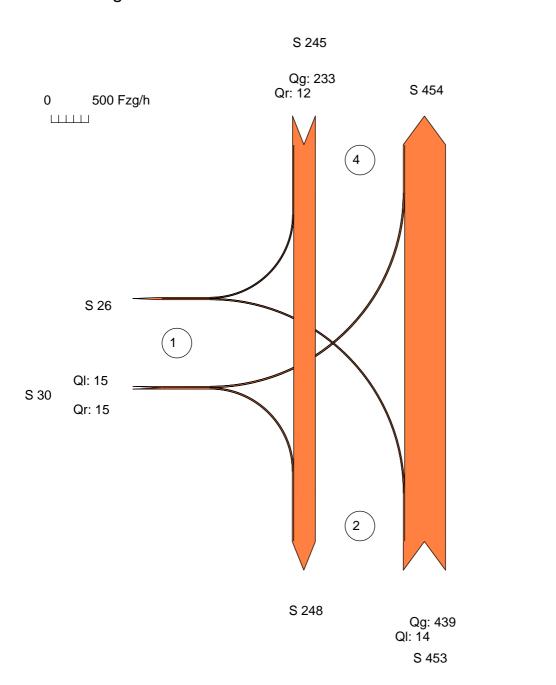
_	rmblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	ge						
٢٥	THIDIALL 3					a) Na	chweis	s der V	'erkehı	squalit	tät im K	raftfah	rzeugv	erkeh	ır				
	Projekt:	B 215	n (P 244	4)									Sta	dt:					
Kn	otenpunkt:	K 6 Le	ese Nor	d									Datu	m: <u>25.</u>	06.20°	13			
Zei	tabschnitt:	nachm	ittägliche	e Spitz	zenstun	de						В	earbeit	er:					
	t _U = 90) s	-	T = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	65	0,722	25	477	11,9	1614	2,23	29,1	1166	0,409	0,00	4,7	39	90	5,88	35	4,9	Α
2	K2(11,12	50	0,556	40	584	14,6	1614	2,23	22,4	897	0,651	0,01	10,2	70	90	10,10	61	14,0	Α
3	K3(4)	8	0,089	82	5	0,1	1614	2,23	3,6	143	0,035	0,00	0,1	100	90	0,59	4	37,5	С
4	K4(3,1)	11	0,122	79	140	3,5	1614	2,23	4,9	197	0,710	0,84	3,4	97	90	6,70	40	53,3	D
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19		1																	
20		1																	
Ė	ı			q _K =	1206	Fz/h		<u> </u>	C _K =	2403	Fz/h	l		0,559	96	a,	maßa =	0,658	1
									- 11									-	


Knoten K 7: OU Leese Ost / Anschluss Mitte

Übersicht Phaseneinteilung

Datei : 130617-K7-vor.amp Projekt : B 215 n (P 2444) Knoten : K 7 Leese Mitte

Stunde: morgendliche Spitzenstunde

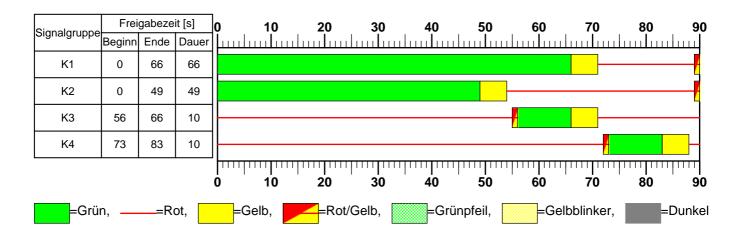


Datei : 130617-K7-vor.amp Projekt : B 215 n (P 2444) Knoten : K 7 Leese Mitte

Stunde: morgendliche Spitzenstunde

Fahrzeuge

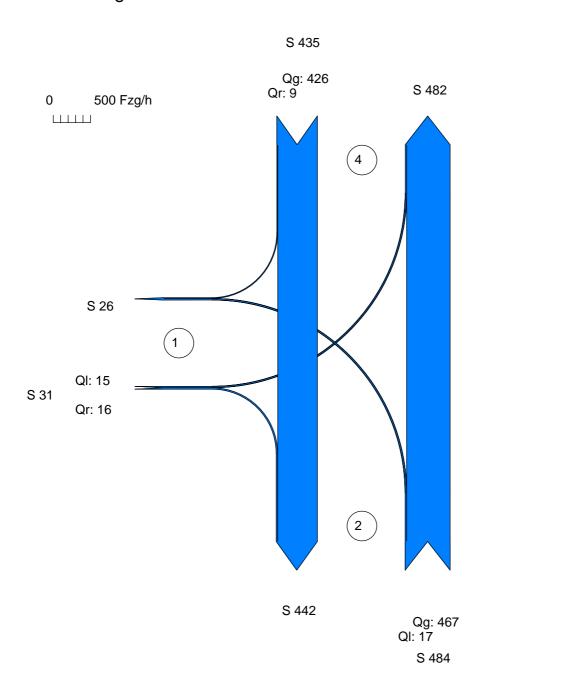
Summe= 728


Zufahrt 1 : Leese Mitte Zufahrt 2 : B 215 n Süd

Zufahrt 3:

Datei : 130617-K7-vor.amp Projekt : B 215 n (P 2444) Knoten : K 7 Leese Mitte

Stunde: morgendliche Spitzenstunde

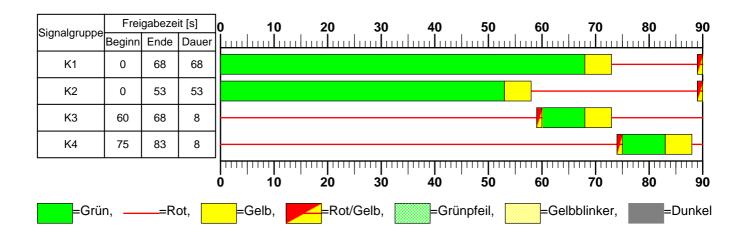

E	rmblatt 3							Knoter	npunkt	mit Li	chtsign	alanlaç	je						
2	Tilibiatt 3					a) Na	chweis	der V	erkehr	squalit	ät im K	raftfah	rzeugv	erkeh/	r				
	Projekt: E	215 ו	n (P 244	4)									Sta	dt:					
Kn	otenpunkt: <u>K</u>	7 Le	ese Mitte	9									Datu	m: <u>24.</u>	06.20°	13			
Zei	tabschnitt: n	norger	ndliche S	Spitzer	nstunde							В	earbeit	er:					
	t _U = 90 :	s	-	Γ = 60	min											_			
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	S	N_{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	66	0,733	24	439	11,0	1614	2,23	29,6	1184	0,371	0,00	4,0	36	90	5,34	32	4,4	Α
2	K2(11,12)	49	0,544	41	245	6,1	1614	2,23	22,0	879	0,279	0,00	3,3	54	90	5,15	31	11,0	Α
3	K3(4)	10	0,111	80	14	0,4	1614	2,23	4,5	179	0,078	0,00	0,3	75	90	1,10	7	35,9	С
4	K4(3,1)	10	0,111	80	30	0,8	1614	2,23	4,5	179	0,167	0,00	0,7	88	90	1,82	11	36,2	С
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
			ı	q _K =	728	Fz/h	<u> </u>		C _K =	2421	Fz/h	l		: 0,326	60		maßg =	0,3498	3

Datei : 130617-K7-nach.amp Projekt : B 215 n (P 2444) Knoten : K 7 Leese Mitte

Fahrzeuge

Zufahrt 1 : Leese Mitte Zufahrt 2 : B 215 n Süd

Zufahrt 3:

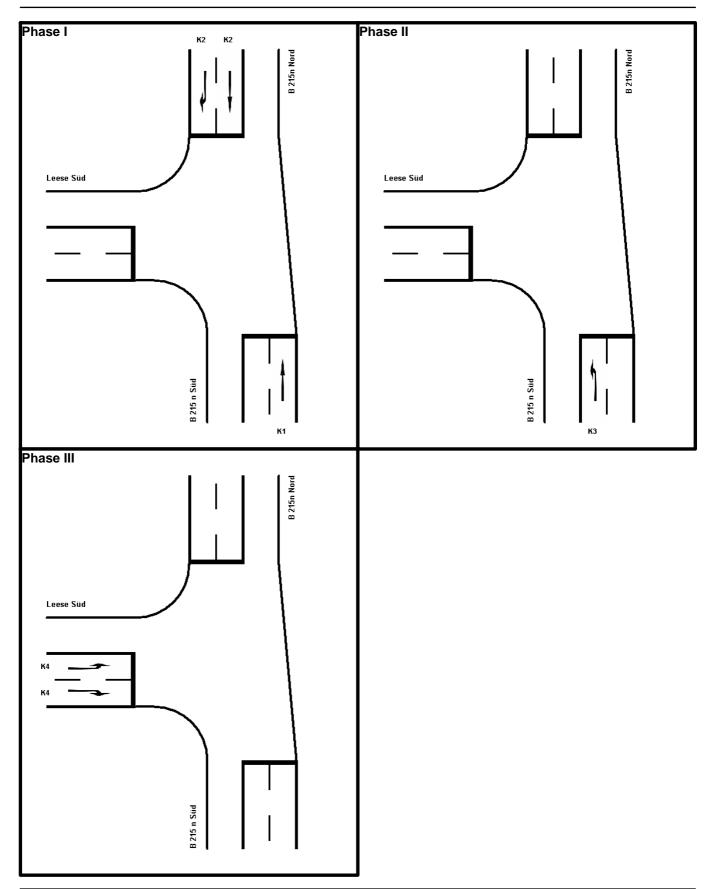

Zufahrt 4: B 215n Nord

Summe= 950

Datei : 130617-K7-nach.amp Projekt : B 215 n (P 2444)

Knoten : K 7 Leese Mitte Stunde : nachmittägliche Spitzenstunde

E.	rmblatt 3							Knoter	npunkt	mit Li	chtsign	alanlaç	ge						
-0	TIIIDIAII 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	erkeh	ır				
	Projekt: E	3 215 i	n (P 244	4)									Sta	dt:					
Kno	otenpunkt: <u>K</u>	7 Le	ese Mitte	Э									Datu	m: <u>25.</u>	06.20	13			
Zei	tabschnitt: n	achm	ittägliche	e Spitz	enstund	de						В	earbeit	er:					
	t _U = 90	S	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	68	0,756	22	467	11,7	1614	2,23	30,5	1220	0,383	0,00	4,0	34	90	5,24	31	3,8	Α
2	K2(11,12)	53	0,589	37	435	10,9	1614	2,23	23,8	951	0,458	0,00	6,1	56	90	7,45	45	10,4	Α
3	K3(4)	8	0,089	82	17	0,4	1614	2,23	3,6	143	0,118	0,00	0,4	100	90	1,27	8	37,8	С
4	K4(3,1)	8	0,089	82	31	0,8	1614	2,23	3,6	143	0,216	0,00	0,7	88	90	1,89	11	38,1	С
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	950	Fz/h			C _K =	2457	Fz/h			0,407	72	g	maßg =	0,430	5


Knoten K 8: OU Leese Ost / Anschluss Süd

Übersicht Phaseneinteilung

Datei : 130617-K8-vor.amp Projekt : B 215 n (P 2444) Knoten : K 8 Leese Süd

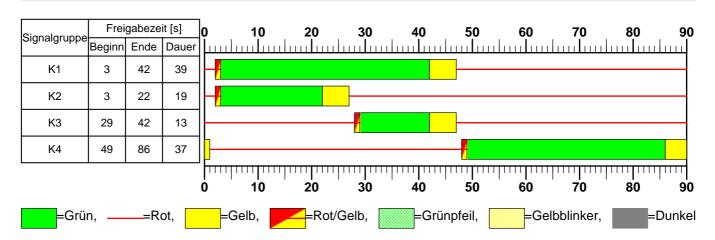
Stunde: morgendliche Spitzenstunde

Datei : 130617-K8-vor.amp Projekt : B 215 n (P 2444) Knoten : K 8 Leese Süd

Stunde: morgendliche Spitzenstunde

Fahrzeuge

Summe= 1042

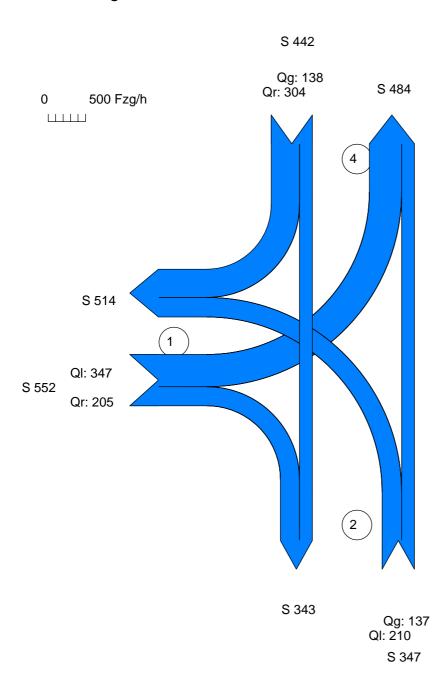

Zufahrt 1 : Leese Süd Zufahrt 2 : B 215 n Süd

Zufahrt 3:

Zufahrt 4: B 215n Nord

Datei : 130617-K8-vor.amp Projekt : B 215 n (P 2444) Knoten : K 8 Leese Süd

Stunde: morgendliche Spitzenstunde


Ear	mblatt 3 -							Knoter	npunkt	mit Li	chtsign	alanlaç	је						
FOI	IIIDIAII 3					a) Na	chweis	der V	erkehr	squalit	ät im K	raftfah	rzeugv	verket	ır				
	Projekt:_I	3 215	n (P 244	4)									Sta	dt:					
Kno	tenpunkt:_l	≺8 Le	ese Süd										Datu	m: <u>24.</u>	06.20°	13			
Zeita	abschnitt: ı	morgei	ndliche S	Spitzei	nstunde							В	earbeit	er:					
	$t_{U} = 90$	s	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	39	0,433	51	152	3,8	1614	2,23	17,5	700	0,217	0,00	2,4	63	90	4,22	25	16,0	Α
2	K2(11)	19	0,211	71	57	1,4	1614	2,23	8,5	341	0,167	0,00	1,2	86	90	2,62	16	29,0	В
3	K2(12)	19	0,211	71	191	4,8	1614	2,23	8,5	341	0,560	0,00	4,3	90	90	6,51	39	31,8	В
4	K3(4)	13	0,144	77	156	3,9	1614	2,23	5,8	233	0,669	0,27	3,7	95	90	6,29	38	40,6	С
5	K4(3)	37	0,411	53	185	4,6	1614	2,23	16,6	664	0,279	0,00	3,1	67	90	5,05	30	17,6	Α
6	K4(1)	37	0,411	53	301	7,5	1614	2,23	16,6	664	0,454	0,00	5,4	72	90	7,40	44	19,2	Α
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1042	Fz/h			C _K =	2943	Fz/h			0,424	13	g	maßg =	0,5370)

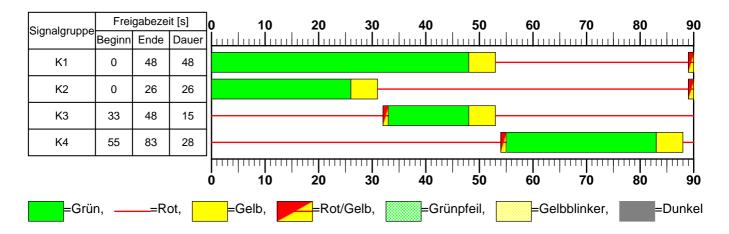
Datei : 130617-K8-nach.amp Projekt : B 215 n (P 2444) Knoten : K 8 Leese Süd

Fahrzeuge

Summe= 1341

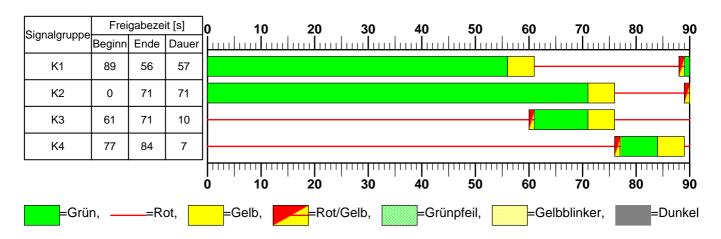
Zufahrt 1 : Leese Süd Zufahrt 2 : B 215 n Süd

Zufahrt 3:


Zufahrt 4: B 215n Nord

Datei: 130617-K8-nach.amp Projekt : B 215 n (P 2444)

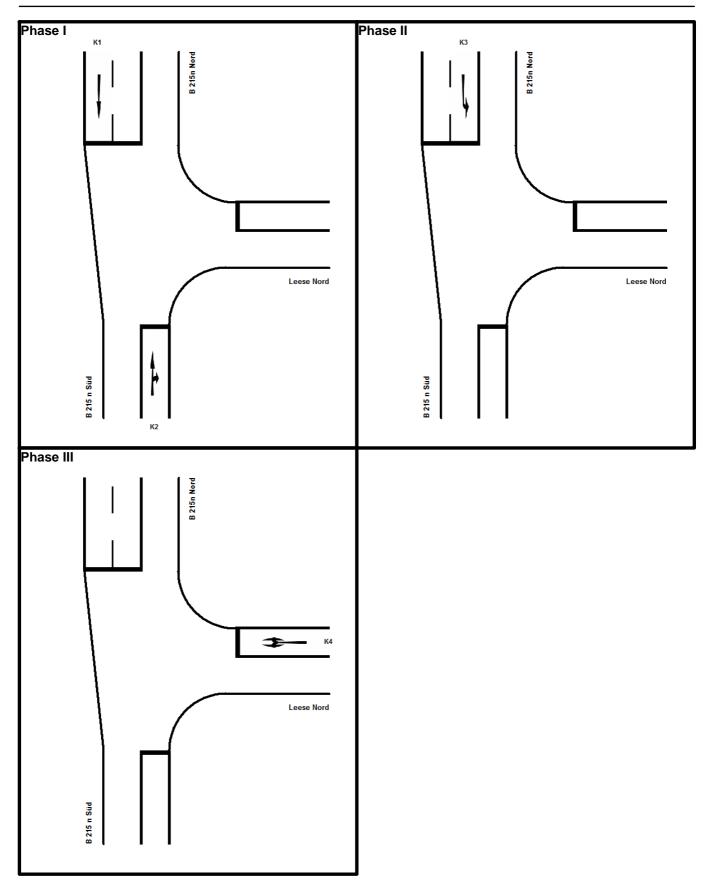
Knoten: K 8 Leese Süd


Stunde: nachmittägliche Spitzenstunde

Datei : 131119-K2-vor.amp Projekt : B 215 n (P 2444) Knoten : K 2 GE Leeseringen

Stunde: morgendliche Spitzenstunde

ᅜ	rmblatt 3							Knote	npunkt	t mit Li	chtsign	alanlaç	ge						
-0	IIIDIALI 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	erkeh	r				
	Projekt:	B 215	n (P 244	4)									Sta	dt:					
Kno	tenpunkt:	K 8 Le	ese Süd										Datu	m: <u>25.</u>	06.20	13			
Zeit	tabschnitt:	nachm	ittägliche	e Spitz	zenstund	de						В	earbeit	er:					
	$t_{U} = 90$) s	-	T = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n_H	h	S	N_{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	48	0,533	42	137	3,4	1614	2,23	21,5	861	0,159	0,00	1,7	50	90	3,38	20	10,7	Α
2	K2(11)	26	0,289	64	138	3,5	1614	2,23	11,7	466	0,296	0,00	2,7	77	90	4,66	28	24,9	В
3	K2(12)	26	0,289	64	304	7,6	1614	2,23	11,7	466	0,652	0,02	6,7	88	90	8,71	52	28,2	В
4	K3(4)	15	0,167	75	210	5,3	1614	2,23	6,7	269	0,780	1,77	5,3	100	90	9,64	58	59,6	D
5	K4(3)	28	0,311	62	205	5,1	1614	2,23	12,6	502	0,408	0,00	4,0	78	90	6,18	37	24,5	В
6	K4(1)	28	0,311	62	347	8,7	1614	2,23	12,6	502	0,691	0,51	7,8	90	90	10,08	60	30,9	В
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1341	Fz/h			C _K =	3066	Fz/h		g =	0,557	'8	g	maßg =	0,6989	9

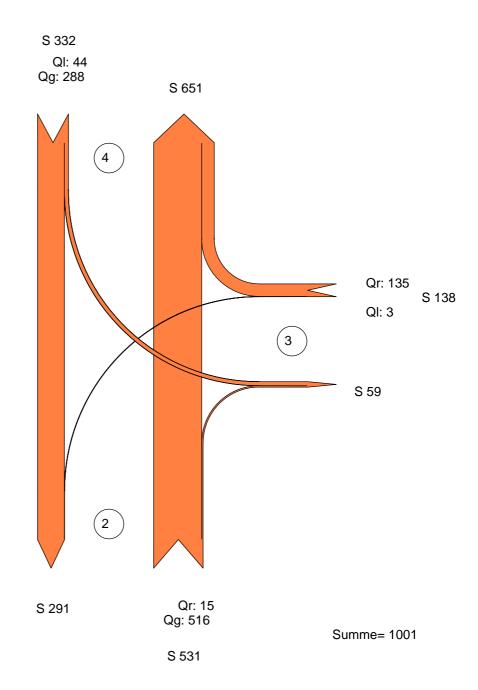

Knoten K 9: OU Leese West / Anschluss Nord

Übersicht Phaseneinteilung

Datei : 130617-K9-vor.amp Projekt : B 215 n (P 2444) Knoten : K 9 Leese Nord

Stunde: morgendliche Spitzenstunde

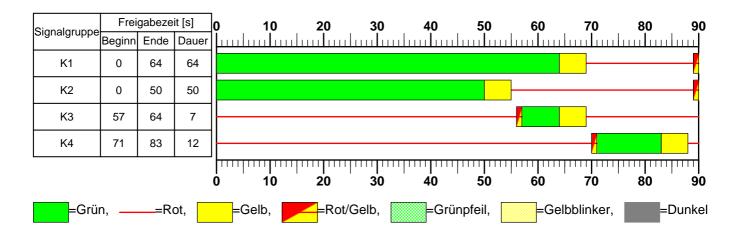
Datei : 130617-K9-vor.amp Projekt : B 215 n (P 2444) Knoten : K 9 Leese Nord


Stunde: morgendliche Spitzenstunde

Fahrzeuge

0 500 Fzg/h

ШШ

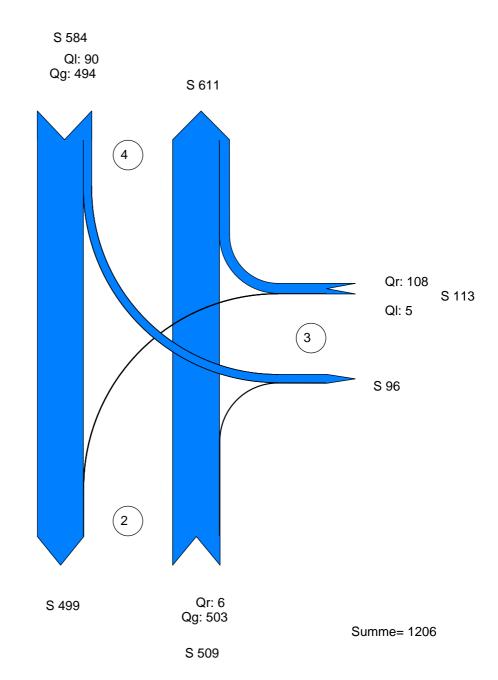

Zufahrt 1:

Zufahrt 2 : B 215 n Süd Zufahrt 3 : Leese Nord Zufahrt 4 : B 215n Nord

Datei : 130617-K9-vor.amp Projekt : B 215 n (P 2444) Knoten : K 9 Leese Nord

Stunde : morgendliche Spitzenstunde

 	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	je						
101	Ilibiatt 3					a) Na	chweis	s der V	erkehi	squalit	ät im K	raftfah	rzeugv	erket/	ır				
	Projekt:_l	B 215	n (P 244	4)									Sta	dt:					
	tenpunkt:_l													m: <u>24.</u>	06.20	13			
Zeit	abschnitt: ı	morgei	ndliche S	Spitzer	nstunde							В	earbeit	er:					
<u> </u>	t _U = 90	s	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _c	С	g	N_{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(11)	64	0,711	26	288	7,2	1614	2,23	28,7	1148	0,251	0,00	2,5	35	90	4,11	25	4,6	Α
2	K2(5,6)	50	0,556	40	531	13,3	1614	2,23	22,4	897	0,592	0,00	8,8	66	90	9,33	56	13,2	Α
3	K3(10)	7	0,078	83	44	1,1	1614	2,23	3,1	126	0,350	0,00	1,0	91	90	2,44	15	39,3	С
4	K4(7,9)	12	0,133	78	138	3,5	1614	2,23	5,4	215	0,641	0,00	3,3	94	90	5,43	33	37,0	С
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
		•		q _K =	1001	Fz/h			C _K =	2386	Fz/h			0,490	00	g	maßg =	0,5865	5

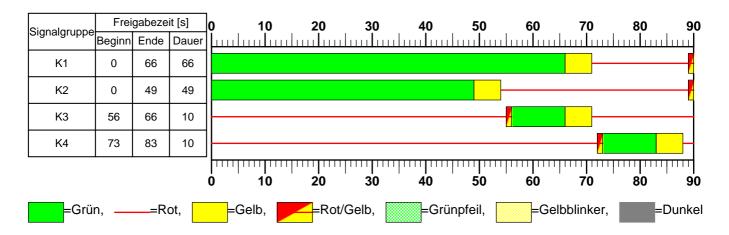

Datei : 130617-K9-nach.amp Projekt : B 215 n (P 2444) Knoten : K 9 Leese Nord

Stunde: nachmittägliche Spitzenstunde

Fahrzeuge

0 500 Fzg/h

Zufahrt 1:

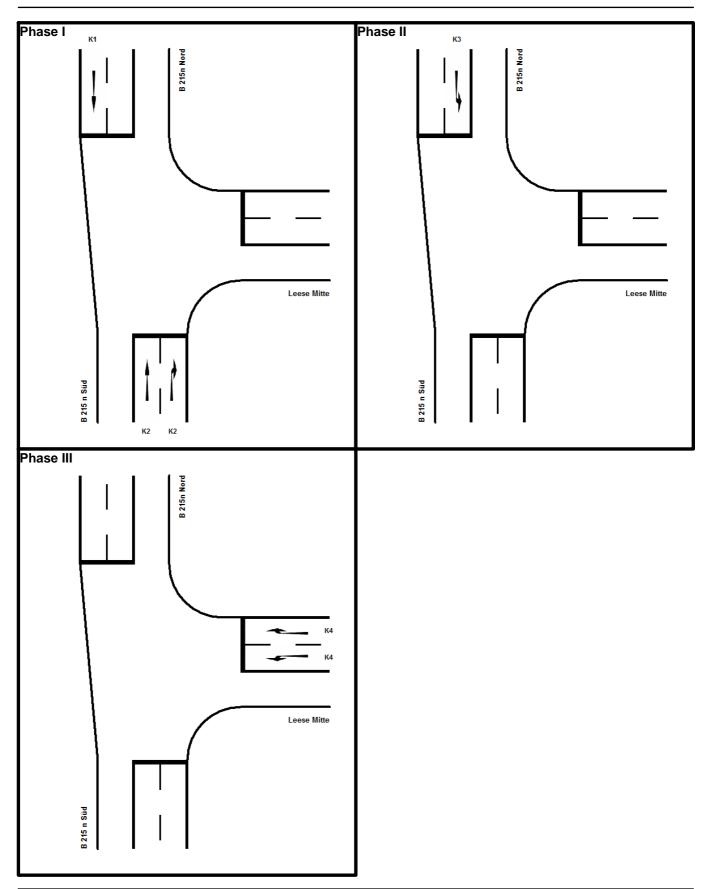

Zufahrt 2 : B 215 n Süd Zufahrt 3 : Leese Nord Zufahrt 4 : B 215n Nord

Datei: 130617-K9-nach.amp Projekt : B 215 n (P 2444)

Knoten: K 9 Leese Nord

Stunde: nachmittägliche Spitzenstunde

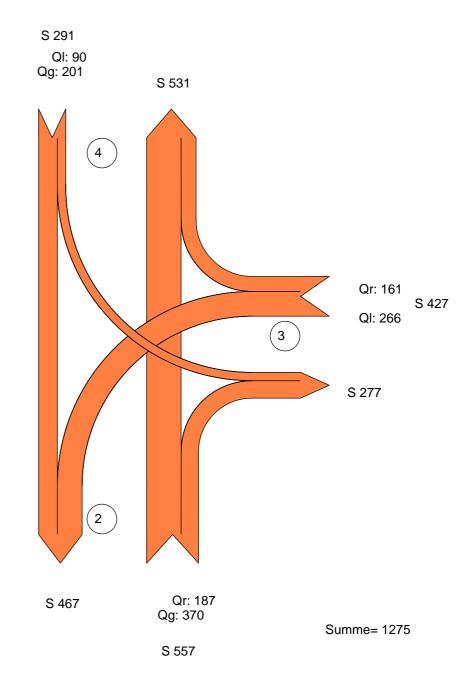
Ear	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	ge						
roi	IIIDIAII 3					a) Na	chweis	s der V	erkehi	squalit	ät im K	raftfah	rzeug	verkeh	ır				
	Projekt:_I	3 215	n (P 244	4)									Sta	dt:					
Kno	tenpunkt:_ <u>l</u>	< 9 Le	ese Nord	t									Datu	m: <u>25.</u>	06.20	13			
Zeit	abschnitt: r	nachm	ittägliche	e Spitz	zenstund	de						В	earbeit	er:					
	$t_{U} = 90$	s	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(11)	66	0,733	24	494	12,4	1614	2,23	29,6	1184	0,417	0,00	4,7	38	90	5,85	35	4,6	Α
2	K2(5,6)	49	0,544	41	509	12,7	1614	2,23	22,0	879	0,579	0,00	8,5	67	90	9,19	55	13,6	Α
3	K3(10)	10	0,111	80	90	2,3	1614	2,23	4,5	179	0,502	0,00	2,1	91	90	4,00	24	37,7	С
4	K4(7,9)	10	0,111	80	113	2,8	1614	2,23	4,5	179	0,630	0,00	2,7	96	90	4,75	29	38,2	С
5																			
6																			
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1206	Fz/h			C _K =	2421	Fz/h			0,511	7	g	maßg =	0,5774	4


Knoten K 10: OU Leese West / Anschluss Mitte

Übersicht Phaseneinteilung

Datei : 130617-K10-vor.amp Projekt : B 215 n (P 2444) Knoten : K 10 Leese Mitte

Datei : 130617-K10-vor.amp Projekt : B 215 n (P 2444) Knoten : K 10 Leese Mitte

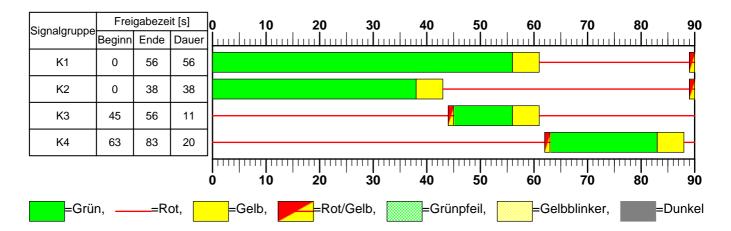

Stunde: morgendliche Spitzenstunde

Fahrzeuge

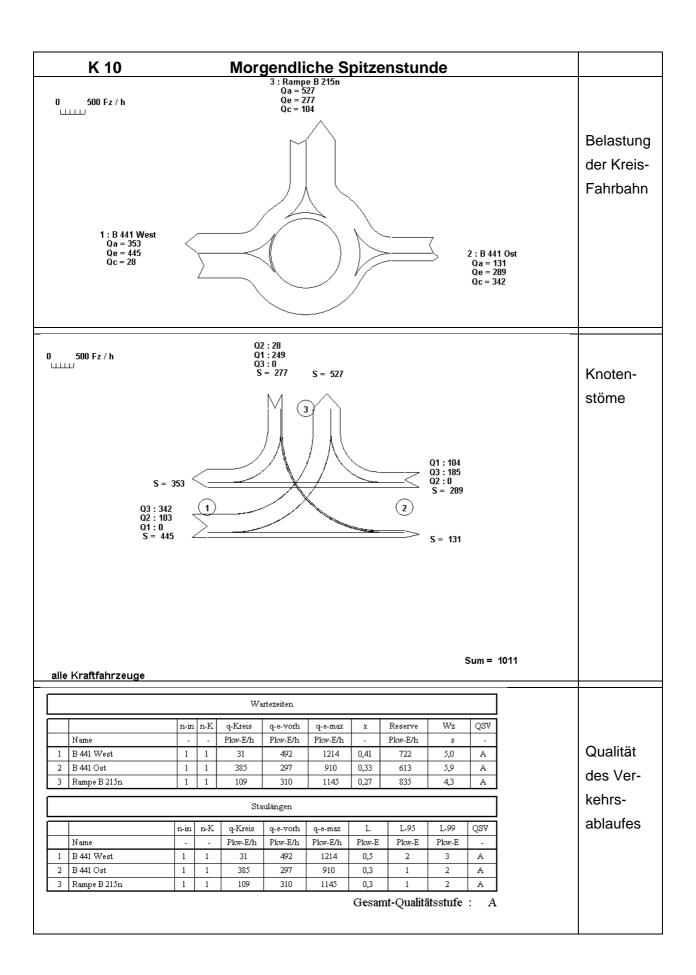
0 500 Fzg/h

5 500 i 2g/ □□□□□

Zufahrt 1:


Zufahrt 2 : B 215 n Süd Zufahrt 3 : Leese Mitte Zufahrt 4 : B 215n Nord

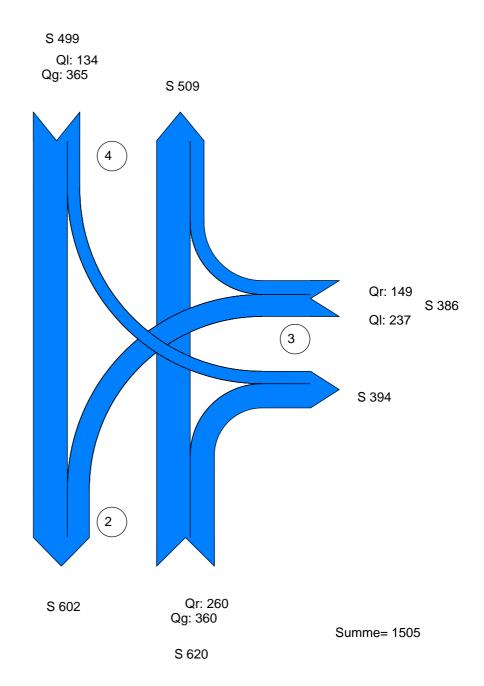
Datei : 130617-K10-nach.amp Projekt : B 215 n (P 2444)


Knoten : K 10 Leese Mitte

Stunde: nachmittägliche Spitzenstunde

Ear	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	je						
5	Ilibiatt 3					a) Na	chweis	s der V	erkehi	squalit	ät im K	raftfah	rzeugv	erket/	ır				
	Projekt:_l	B 215	n (P 244	4)									Sta	dt:					
	tenpunkt:_l													m: <u>24.</u>	06.20	13			
Zeit	abschnitt: ı	morge	ndliche S	Spitzer	nstunde							В	earbeit	er:					
	t _U = 90	s	-	Γ = 60	min												Г		
Nr.	Bez.	t _F	f	t _S	q	m	q _S	t _B	n _c	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(11)	54	0,600	36	201	5,0	1614	2,23	24,2	969	0,208	0,00	2,3	46	90	4,01	24	8,2	Α
2	K2(5)	39	0,433	51	370	9,3	1614	2,23	17,5	700	0,529	0,00	6,8	73	90	8,47	51	18,7	Α
3	K2(6)	39	0,433	51	187	4,7	1614	2,23	17,5	700	0,267	0,00	3,0	64	90	4,95	30	16,3	Α
4	K3(10)	8	0,089	82	90	2,3	1614	2,23	3,6	143	0,627	0,00	2,2	96	90	4,07	24	39,6	С
5	K4(7)	22	0,244	68	266	6,7	1614	2,23	9,9	395	0,674	0,32	6,1	91	90	8,61	52	33,6	В
6	K4(9)	22	0,244	68	161	4,0	1614	2,23	9,9	395	0,408	0,00	3,4	85	90	5,50	33	28,5	В
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
		'		q _K =	1275	Fz/h			C _K =	3302	Fz/h			0,461	9	g	maßg =	0,5943	3

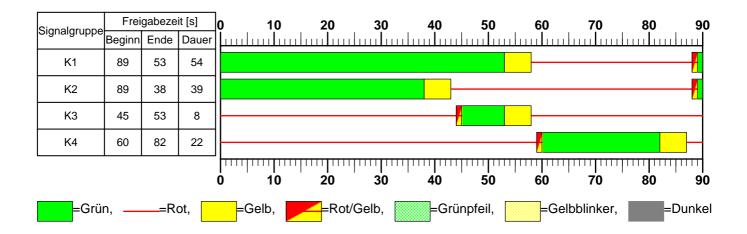
Datei : 130617-K10-nach.amp Projekt : B 215 n (P 2444) Knoten : K 10 Leese Mitte


Stunde: nachmittägliche Spitzenstunde

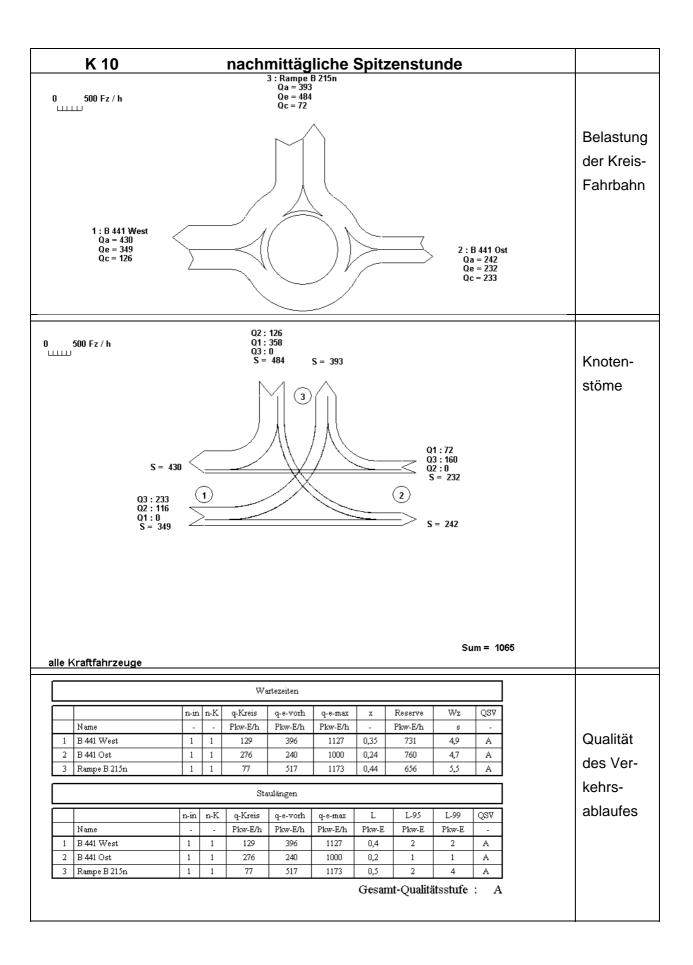
Fahrzeuge

0 500 Fzg/h

ШШ

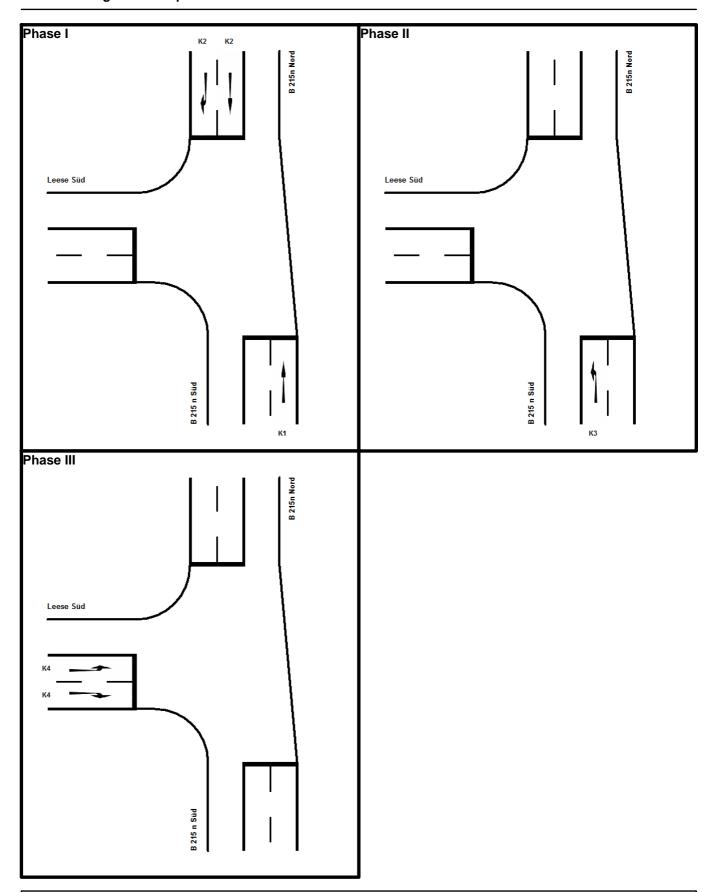

Zufahrt 1:

Zufahrt 2 : B 215 n Süd Zufahrt 3 : Leese Mitte Zufahrt 4 : B 215n Nord


Datei : 130617-K10-vor.amp Projekt : B 215 n (P 2444) Knoten : K 10 Leese Mitte

Stunde: morgendliche Spitzenstunde

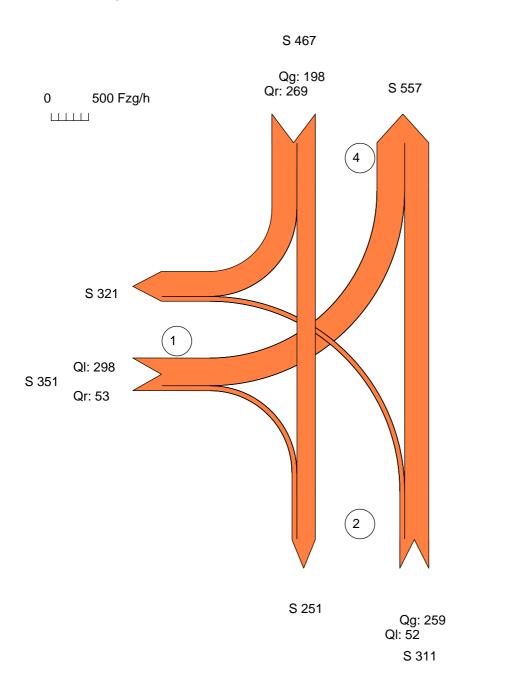
Ear	mblatt 3							Knoter	npunkt	mit Li	chtsign	alanlaç	је						
FUI	IIIDIAII 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	verkeh	ır				
	Projekt:_I	3 215	n (P 244	4)									Sta	dt:					
Kno	tenpunkt: <u>k</u>	< 10 L	eese Mit	te									Datu	m: <u>25.</u>	06.20	13			
Zeita	abschnitt: r	nachm	ittägliche	e Spitz	zenstund	de						В	earbeit	er:					
	$t_{U} = 90$	s	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N _{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(11)	56	0,622	34	365	9,1	1614	2,23	25,1	1004	0,363	0,00	4,5	49	90	6,07	36	8,3	Α
2	K2(5)	38	0,422	52	360	9,0	1614	2,23	17,0	682	0,528	0,00	6,7	74	90	8,42	51	19,3	Α
3	K2(6)	38	0,422	52	260	6,5	1614	2,23	17,0	682	0,381	0,00	4,5	69	90	6,49	39	17,9	Α
4	K3(10)	11	0,122	79	134	3,4	1614	2,23	4,9	197	0,679	0,41	3,2	94	90	5,93	36	45,3	С
5	K4(7)	20	0,222	70	237	5,9	1614	2,23	9,0	359	0,661	0,14	5,4	92	90	7,82	47	33,3	В
6	K4(9)	20	0,222	70	149	3,7	1614	2,23	9,0	359	0,415	0,00	3,2	86	90	5,30	32	30,0	В
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1505	Fz/h			C _K =	3283	Fz/h			0,485	8	g	maßa =	0,5988	3



Knoten K 11: OU Leese West / Anschluss Süd

Übersicht Phaseneinteilung

Datei : 130617-K11-vor.amp Projekt : B 215 n (P 2444) Knoten : K 11 Leese Süd Stunde : morgendliche Spitzenstunde



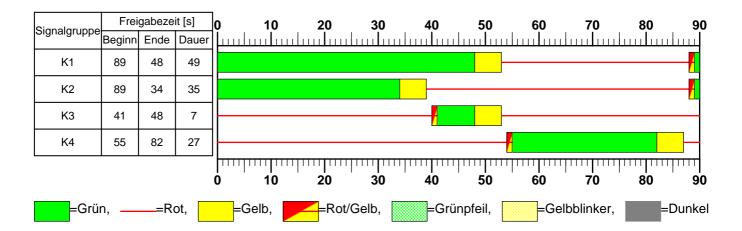
Datei : 130617-K11-vor.amp Projekt : B 215 n (P 2444) Knoten : K 11 Leese Süd

Stunde: morgendliche Spitzenstunde

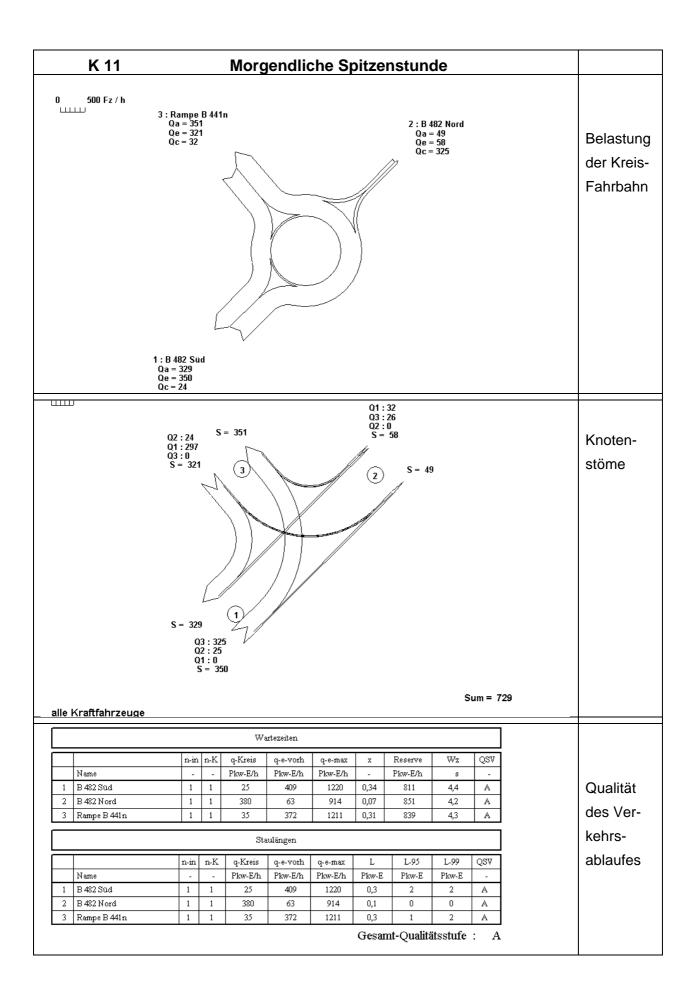
Fahrzeuge

Summe= 1129

Zufahrt 1 : Leese Süd Zufahrt 2 : B 215 n Süd

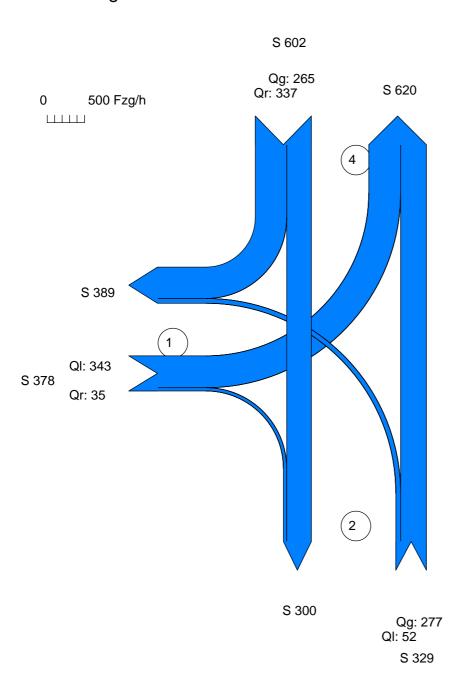

Zufahrt 3:

Zufahrt 4: B 215n Nord


Datei : 130617-K11-vor.amp Projekt : B 215 n (P 2444) Knoten : K 11 Leese Süd

Stunde: morgendliche Spitzenstunde

Ear	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	je						
-01	Ilibiatt 3					a) Na	chweis	s der V	erkehr	squalit	ät im K	raftfah	rzeugv	erket/	ır				
	Projekt:_l	B 215	n (P 244	4)									Sta	dt:					
	tenpunkt:_l													m: <u>24.</u>	06.20°	13			
Zeit	abschnitt: ı	morgei	ndliche S	Spitzer	nstunde							В	earbeit	er:					
	t _U = 90	s	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _C	С	g	N_{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	49	0,544	41	259	6,5	1614	2,23	22,0	879	0,295	0,00	3,5	54	90	5,37	32	11,1	Α
2	K2(11)	35	0,389	55	198	5,0	1614	2,23	15,7	628	0,315	0,00	3,4	68	90	5,48	33	19,2	Α
3	K2(12)	35	0,389	55	269	6,7	1614	2,23	15,7	628	0,428	0,00	4,9	73	90	6,97	42	20,2	В
4	K3(4)	7	0,078	83	52	1,3	1614	2,23	3,1	126	0,414	0,00	1,2	92	90	2,74	16	39,5	С
5	K4(3)	27	0,300	63	53	1,3	1614	2,23	12,1	484	0,109	0,00	1,0	77	90	2,29	14	22,8	В
6	K4(1)	27	27 0,300 63 298 7,5 1614 2,23 12,1 484 0,615 0,00 6,4 85 90 8,44														51	27,0	В
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1129	Fz/h		ı	C _K =	3229	Fz/h			0,411	4	a	= 	0,5168	3



Datei : 130617-K11-nach.amp Projekt : B 215 n (P 2444) Knoten : K 11 Leese Süd

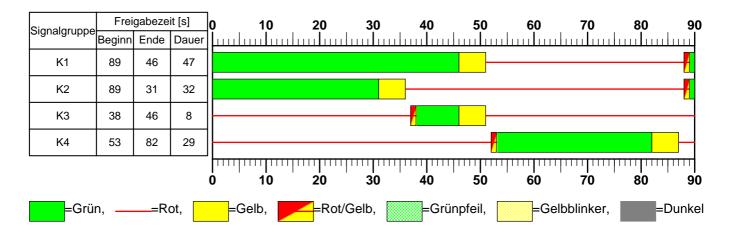
Stunde: nachmittägliche Spitzenstunde

Fahrzeuge

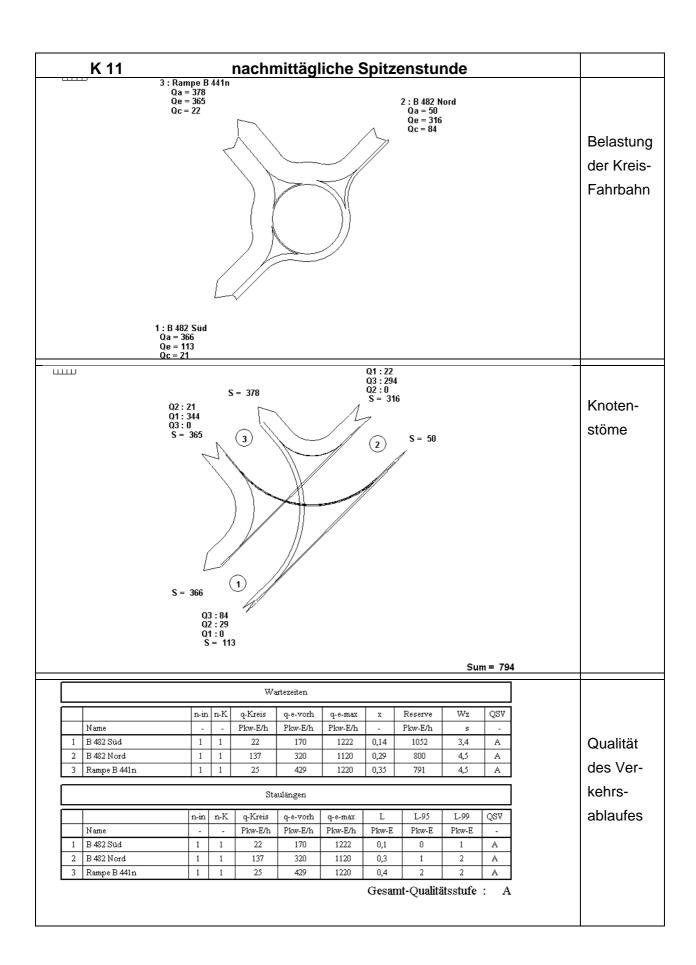
Summe= 1309

Zufahrt 1 : Leese Süd Zufahrt 2 : B 215 n Süd

Zufahrt 3:


Zufahrt 4: B 215n Nord

Datei: 130617-K11-nach.amp Projekt : B 215 n (P 2444)


Knoten: K 11 Leese Süd

Stunde: nachmittägliche Spitzenstunde

Ear	mblatt 3							Knote	npunkt	mit Li	chtsign	alanlaç	је						
5	Ilibiatt 3					a) Na	chweis	s der V	erkehi	squalit	ät im K	raftfah	rzeugv	erket/	ır				
	Projekt:_I	3 215	n (P 244	4)									Sta	dt:					
Kno	tenpunkt: <u> ŀ</u>	< 11 L	eese Sü	d									Datu	m: <u>25.</u>	06.20°	13			
Zeit	abschnitt: r	nachm	ittägliche	e Spitz	zenstund	de						В	earbeit	er:					
	t _U = 90	s	-	Γ = 60	min														
Nr.	Bez.	t _F	f	t _S	q	m	qs	t _B	n _c	С	g	N_{GE}	n _H	h	S	N _{RE}	I _{Stau}	w	QSV
		[s]	[-]	[s]	[Fz/h]	[Fz]	[Fz/h]	[s/Fz]	[Fz]	[Fz/h]	[-]	[Fz]	[Fz]	[%]	[%]	[Fz]	[m]	[s]	
1	K1(5)	47	0,522	43	277	6,9	1614	2,23	21,1	843	0,329	0,00	4,0	58	90	5,87	35	12,4	Α
2	K2(11)	32	0,356	58	265	6,6	1614	2,23	14,3	574	0,462	0,00	5,1	77	90	7,18	43	22,4	В
3	K2(12)	32	0,356	58	337	8,4	1614	2,23	14,3	574	0,587	0,00	6,9	82	90	8,72	52	23,6	В
4	K3(4)	8	0,089	82	52	1,3	1614	2,23	3,6	143	0,362	0,00	1,2	92	90	2,72	16	38,6	С
5	K4(3)	29	0,322	61	35	0,9	1614	2,23	13,0	520	0,067	0,00	0,6	67	90	1,68	10	21,1	В
6	K4(1)	29	0,322	61	343	8,6	1614	2,23	13,0	520	0,659	0,12	7,4	86	90	9,37	56	27,1	В
7																			
8																			
9																			
10																			
11																			
12																			
13																			
14																			
15																			
16																			
17																			
18																			
19																			
20																			
				q _K =	1309	Fz/h			C _K =	3174	Fz/h		g =	0,503	31	g	maßg =	0,6048	3

